Intergenerational trauma increases lifetime susceptibility to depression and other psychiatric disorders. Whether intergenerational trauma transmission is a consequence of in-utero neurodevelopmental disruptions versus early-life mother–infant interaction is unknown. Here, we demonstrate that trauma exposure during pregnancy induces in mouse offspring social deficits and depressive-like behavior. Normal pups raised by traumatized mothers exhibited similar behavioral deficits to those induced in pups raised by their biological traumatized mothers. Good caregiving by normal mothers did not reverse prenatal trauma-induced behaviors, indicating a two-hit stress mechanism comprising both in-utero abnormalities and early-life poor parenting. The behavioral deficits were associated with profound changes in the brain metabotranscriptome. Striking increases in the mitochondrial hypoxia marker and epigenetic modifier 2-hydroxyglutaric acid in the brains of neonates and adults exposed prenatally to trauma indicated mitochondrial dysfunction and epigenetic mechanisms. Bioinformatic analyses revealed stress- and hypoxia-response metabolic pathways in the neonates, which produced long-lasting alterations in mitochondrial energy metabolism and epigenetic processes (DNA and chromatin modifications). Most strikingly, early pharmacological interventions with acetyl-L-carnitine (ALCAR) supplementation produced long-lasting protection against intergenerational trauma-induced depression.
This paper describes the structure-based design of a preliminary drug candidate against COVID-19 using free software and publicly available X-ray crystallographic structures. The goal of this tutorial is to disseminate skills in structure-based drug design and to allow others to unleash their own creativity to design new drugs to fight the current pandemic. The tutorial begins with the X-ray crystallographic structure of the main protease (M pro ) of the SARS coronavirus (SARS-CoV) bound to a peptide substrate and then uses the UCSF Chimera software to modify the substrate to create a cyclic peptide inhibitor within the M pro active site. Finally, the tutorial uses the molecular docking software AutoDock Vina to show the interaction of the cyclic peptide inhibitor with both SARS-CoV M pro and the highly homologous SARS-CoV-2 M pro . The supporting information provides an illustrated step-by-step protocol, as well as a video showing the inhibitor design process, to help readers design their own drug candidates for COVID-19 and the coronaviruses that will cause future pandemics. An accompanying preprint in bioRxiv [
Peptide vaccines and immunotherapies against aggregating proteins involved in the pathogenesis and progression of Alzheimer's disease (AD)-the β-amyloid peptide (Aβ) and tau-are promising therapeutic avenues against AD. Two decades of effort has led to the controversial United States Food and Drug Administration (FDA) approval of the monoclonal antibody Aducanumab (Aduhelm), which has subsequentially sparked the revival and expedited review of promising monoclonal antibody immunotherapies that target Aβ. In this review, we explore the development of Aβ and tau peptide vaccines and immunotherapies with monoclonal antibodies in clinical trials against AD.
This paper presents the design and study of a first-in-class cyclic peptide inhibitor against the SARS-CoV-2 main protease (Mpro). The cyclic peptide inhibitor is designed to mimic the conformation of a substrate at a C-terminal autolytic cleavage site of Mpro. Synthesis and evaluation of a first-generation cyclic peptide inhibitor reveals that the inhibitor is active against Mpro in vitro and is non-toxic toward human cells in culture. The initial hit described in this manuscript, UCI-1, lays the groundwork for the development of additional cyclic peptide inhibitors against Mpro with improved activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.