Under homeostatic conditions, dendritic cells (DCs) continuously patrol the intestinal lamina propria. Upon antigen encounter, DCs initiate C‐C motif chemokine receptor 7 (CCR7) expression and migrate into lymph nodes to direct T cell activation and differentiation. The mechanistic underpinnings of DC migration from the tissues to lymph nodes have been largely elucidated, contributing greatly to our understanding of DC functionality and intestinal immunity. In contrast, the molecular mechanisms allowing DCs to efficiently migrate through the complex extracellular matrix of the intestinal lamina propria prior to antigen encounter are still incompletely understood. Here we show that small intestinal murine CD11b+CD103+ DCs express Placenta‐expressed transcript 1 (Plet1), a glycophoshatidylinositol (GPI)‐anchored surface protein involved in migration of keratinocytes during wound healing. In the absence of Plet1, CD11b+CD103+ DCs display aberrant migratory behavior, and accumulate in the small intestine, independent of CCR7 responsiveness. RNA‐sequencing indicated involvement of Plet1 in extracellular matrix‐interactiveness, and subsequent in‐vitro migration assays revealed that Plet1 augments the ability of DCs to migrate through extracellular matrix containing environments. In conclusion, our findings reveal that expression of Plet1 facilitates homeostatic interstitial migration of small intestinal DCs.
BACKGROUND Major obstacles that have impeded the development of effective new therapies for GBM include inter- and intratumoral heterogeneity, the blood-brain-barrier and use of sub-optimal cell line-based preclinical models. Taking these hurdles into account, we have set up a patient-derived GBM drug-screening platform. We optimized protocols to improve cell culture success rate and retrospectively assessed the predictive power of our assay for patient response to TMZ. A large panel of GBM cells was screened for sensitivity to available oncological agents. Drugs of interest were selected based on favorable physicochemical properties for BBB crossing and potent activity in (a subset of) GBM cultures. Finally, we determined the success rate of performing a small-scale screen with 20 selected agents within 4 weeks of receiving tumor tissue. RESULTS By combining both CUSA and tissue piece-derived dissociation protocols, culture success increased to 95%, ensuring representation of the near-complete spectrum of GBM subtypes. Single-cell sequencing studies confirmed heterogeneity in our low-passage cell cultures. In vitro screening of TMZ on a large cohort (n = 55) identified 3 response categories (responders/intermediates/non-responders) for which Cox regression analysis revealed significantly different overall survival curves of corresponding patients. Screening of 107 FDA-approved anticancer agents on 45 GBM cultures underscored the tremendous intertumoral heterogeneity in drug sensitivities. We identified 20 potent agents each effective at clinically-achievable concentrations in (a subset of) GBM cultures and having favorable BBB penetration properties (CNS-MPO score). Screening of these agents on a per patient basis within 4 weeks of receiving tissue was successful in 18 out of 24 (75%) tested tumors. In the remaining cases the tumor cells grew very slowly and longer culture times were required. CONCLUSION Our drug screening platform offers a tool to predict TMZ response and assess sensitivity to candidate treatments, either for GBM subsets or on a per patient basis.
INTRODUCTION Little progress has been made in the development of effective new therapies for glioblastoma (GBM) the past decades. Fresh patient-derived GBM cell culture models have become the gold standard for GBM drug discovery and development. One of the major obstacles in identifying novel candidate drugs against GBM remains the blood-brain barrier (BBB). Therefore, it is crucial to select drugs with favourable physicochemical properties to cross BBB and reach the tumour tissue in therapeutically effective concentrations. In current drug repurposing approach, we evaluated available anti-cancer agents in our patient-derived drug screening platform against GBM. METHODS The FDA-approved Oncology Drug Set II library was tested on 45 primary GBM cell cultures. We developed a drug shortlisting pipeline combining efficacy data with pharmacodynamic and pharmacokinetic characteristics of each compound. The therapeutic efficacy of the selected agent was assessed in an orthotopic mouse PDX model, while penetration into the CNS by LC/MS/MS. RESULTS Omacetaxine mepesuccinate (OMA) was ranked as one of the most promising candidates applying our drug selection approach. In vitro, OMA revealed anti-tumour activity at IC50 values well-below reported Cmax plasma values in approximately 80% of GBM cultures. NanoString nCounter analysis, revealed DNA damage repair as the main pathway involved in OMA’s anti-tumour effect. Activation of caspase 3/7 activity and decrease of glioma cell invasiveness were also linked to its anti-tumour effect. In vivo, 1mg/kg dose of OMA was found to reach the brain tumour tissue in concentrations similar to the reported IC50 values in vitro. No adverse reactions were noted and a survival benefit was observed in a proportion of the treated mice. CONCLUSIONS At 1 mg/kg, OMA reaches the tumour brain tissue in therapeutically effective concentrations in mice while a moderate therapeutic benefit was observed. Additional in vivo experiments are ongoing investigating higher dosages of OMA and longer exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.