RNA genetic circuitry is emerging as a powerful tool to control gene expression. However, little work has been done to create a theoretical foundation for RNA circuit design. A prerequisite to this is a quantitative modeling framework that accurately describes the dynamics of RNA circuits. In this work, we develop an ordinary differential equation model of transcriptional RNA genetic circuitry, using an RNA cascade as a test case. We show that parameter sensitivity analysis can be used to design a set of four simple experiments that can be performed in parallel using rapid cell-free transcription-translation (TX-TL) reactions to determine the 13 parameters of the model. The resulting model accurately recapitulates the dynamic behavior of the cascade, and can be easily extended to predict the function of new cascade variants that utilize new elements with limited additional characterization experiments. Interestingly, we show that inconsistencies between model predictions and experiments led to the model-guided discovery of a previously unknown maturation step required for RNA regulator function. We also determine circuit parameters in two different batches of TX-TL, and show that batch-to-batch variation can be attributed to differences in parameters that are directly related to the concentrations of core gene expression machinery. We anticipate the RNA circuit models developed here will inform the creation of computer aided genetic circuit design tools that can incorporate the growing number of RNA regulators, and that the parametrization method will find use in determining functional parameters of a broad array of natural and synthetic regulatory systems.
RNA genetic circuitry is emerging as a powerful tool to control gene expression. However, little work has been done to create a theoretical foundation for RNA circuit design. A prerequisite to this is a quantitative modeling framework that accurately describes the dynamics of RNA circuits. In this work, we develop an ordinary differential equation model of transcriptional RNA genetic circuitry, using an RNA cascade as a test case. We show that parameter sensitivity analysis can be used to design a set of four simple experiments that can be performed in parallel using rapid cell-free transcription-translation (TX-TL) reactions to determine the thirteen parameters of the model. The resulting model accurately recapitulates the dynamic behavior of the cascade, and can be easily extended to predict the function of new cascade variants that utilize new elements with limited additional characterization experiments. Interestingly, we show that inconsistencies between model predictions and experiments led to the model-guided discovery of a previously unknown maturation step required for RNA regulator function. We also determine circuit parameters in two different batches of TX-TL, and show that batch-to-batch variation can be attributed to differences in parameters that are directly related to the concentrations of core gene expression machinery. We anticipate the RNA circuit models developed here will inform the creation of computer aided genetic circuit design tools that can incorporate the growing number of RNA regulators, and that the parameterization method will find use in determining functional parameters of a broad array of natural and synthetic regulatory systems.
RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.
RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal noise. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs in vivo and show that our sRNA transcriptional network reduces both network response time and noise in steady-state gene expression.This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.