The dentate gyrus (DG) engages in sustained Arc transcription for at least 8 hours following behavioral induction, and this time course may be functionally coupled to the unique role of the DG in hippocampus-dependent learning and memory. The factors that regulate long-term DG Arc expression, however, remain poorly understood. Animals lacking Egr3 show less Arc expression following convulsive stimulation, but the effect of Egr3 ablation on behaviorally induced Arc remains unknown. To address this, Egr3−/− and wild-type (WT) mice explored novel spatial environments and were sacrificed either immediately or after 5, 60, 240, or 480 minutes, and Arc expression was quantified by fluorescence in situ hybridization. Although short-term (i.e., within 60 min) Arc expression was equivalent across genotypes, DG Arc expression was selectively reduced at 240 and 480 minutes in mice lacking Egr3. These data demonstrate the involvement of Egr3 in regulating the late protein-dependent phase of Arc expression in the DG.
The mammalian hippocampus (Hp) can be functionally segregated along its septotemporal axis, with involvement of dorsal hippocampus (dHp) in spatial memory and ventral hippocampus (vHp) in stress responses and emotional behaviour. In the present study, we investigate comparable functional segregation in proposed homologues within the avian brain. Using Japanese quail (Coturnix Japonica), we report that bilateral lesions of the rostral hippocampus (rHp) produce robust deficits in a spatial Y-maze discrimination (YMD) test while sparing performance during contextual fear conditioning (CFC), comparable to results from lesions to homologous regions in mammals. In contrast, caudal hippocampus (cHp) lesions failed to produce deficits in either CFC or YMD, suggesting that, unlike mammals, both cHp and rHp of birds can support emotional behavior. These observations demonstrate functional segregation along the rostrocaudal axis of the avian Hp that is comparable in part to distinctions seen along the mammalian hippocampal septotemporal axis.
Spontaneous novelty preference is apparent in a wide array of animals, including mammals, birds, reptiles, and fish. This provides a powerful behavioral assay to assess whether an animal can recognize a diverse array of stimuli in a common paradigm. Surprisingly, no research has been conducted in birds using novelty approach under conditions comparable to the spontaneous object recognition (SOR) protocols that have become standard across other animals. To correct this, the current study adapts a number of SOR protocols commonly used in mammals to characterize novelty approach in Silver King pigeons and Japanese quail. We show that, in general, both quail and pigeons readily approach novel objects or locations when tested using SOR protocols, although pigeons show a neophilic response under some conditions in which quail do not. Neither quail nor pigeons readily approach objects in novel contexts or novel locations. These data show that SOR can be successfully adapted to birds, allowing for more direct comparison between mammals and birds in tasks of shared ecological relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.