Adsorption and ordering at the vapor-liquid interfaces of mutually saturated water/1-butanol solutions at a temperature of 298.15 K were investigated using configurational-bias Monte Carlo simulations in the Gibbs ensemble and compared to the surface properties of neat water and 1-butanol liquids. A dense 1-butanol monolayer is observed at the surface of the water-rich phase, which results in a substantial decrease of its surface tension. In contrast, there is no enrichment of water molecules at the surface of the butanol-rich phase, and its surface tension is not significantly changed. Analysis of the interfacial structures reveals that these systems exhibit orientational ordering and composition heterogeneity. Analysis of the hydrogen-bonding distributions suggests that the formation of the 1-butanol monolayer is driven by an excellent match between water and the primary alcohol; that is, additional hydrogen bonds are formed between the excess free hydrogens of surface water and the excess hydrogen-bond acceptor sites of 1-butanol.
The pore-throat structures play a dominant role in the evaluation of properties of tight sandstone, but it remains difficult to determine the related parameters and understand their impact on reservoir quality. Hence, toward this end, we analyze the experimental data that are indicative of the pore-throat system, then we investigate the effect of fractal dimensions of pore-throat structures on petrologic and physical properties, and finally, the optical observations, fractal theory, and prediction model were integrated to explore the qualities of various reservoir types in tight sandstones. The results show that the fractal dimensions of the mercury intrusion curve correspond to three pore-throat types and those of the mercury extrusion curve could correspond to two pore-throat types. Five types of reservoirs were identified, the best reservoir type has a high percentage of interparticle and dissolution pores but a low proportion of clay-related pores, and the differences in pore-throat connectivity of various types affect storage capacity significantly. The storage ability prediction models of various reservoir types are raised by integrated experimental data. This work employed a comprehensive fractal theory based on capillary pressure curves and helps to explore how pore-throat systems influence reservoir quality in tight sandstones.
In this paper, the Kähler conditions of the Chern-Finsler connection in complex Finsler geometry are studied, and it is proved that Kähler Finsler metrics are actually strongly Kähler.
The warped product structures of Finsler metrics are studied in this paper. We give the formulae of the flag curvature and Ricci curvature of these metrics, and obtain the characterization of such metrics to be Einstein. Some Einstein Finsler metrics of this type are constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.