Despite that convolutional neural networks (CNN) have recently demonstrated high-quality reconstruction for single-image super-resolution (SR), recovering natural and realistic texture remains a challenging problem. In this paper, we show that it is possible to recover textures faithful to semantic classes. In particular, we only need to modulate features of a few intermediate layers in a single network conditioned on semantic segmentation probability maps. This is made possible through a novel Spatial Feature Transform (SFT) layer that generates affine transformation parameters for spatial-wise feature modulation. SFT layers can be trained end-to-end together with the SR network using the same loss function. During testing, it accepts an input image of arbitrary size and generates a high-resolution image with just a single forward pass conditioned on the categorical priors. Our final results show that an SR network equipped with SFT can generate more realistic and visually pleasing textures in comparison to state-of-the-art SRGAN [27] and EnhanceNet [38].
This paper presents a multi-output regression model for crowd counting in public scenes. Existing counting by regression methods either learn a single model for global counting, or train a large number of separate regressors for localised density estimation. In contrast, our single regression model based approach is able to estimate people count in spatially localised regions and is more scalable without the need for training a large number of regressors proportional to the number of local regions. In particular, the proposed model automatically learns the functional mapping between interdependent low-level features and multi-dimensional structured outputs. The model is able to discover the inherent importance of different features for people counting at different spatial locations. Extensive evaluations on an existing crowd analysis benchmark dataset and a new more challenging dataset demonstrate the effectiveness of our approach.
This paper addresses semantic image segmentation by incorporating rich information into Markov Random Field (MRF), including high-order relations and mixture of label contexts. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic end-toend computation in a single forward pass. Specifically, DPN extends a contemporary CNN architecture to model unary terms and additional layers are carefully devised to approximate the mean field algorithm (MF) for pairwise terms. It has several appealing properties. First, different from the recent works that combined CNN and MRF, where many iterations of MF were required for each training image during back-propagation, DPN is able to achieve high performance by approximating one iteration of MF. Second, DPN represents various types of pairwise terms, making many existing works as its special cases. Third, DPN makes MF easier to be parallelized and speeded up in Graphical Processing Unit (GPU). DPN is thoroughly evaluated on the PASCAL VOC 2012 dataset, where a single DPN model yields a new state-of-the-art segmentation accuracy of 77.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.