As macroscopic rough terrains are time varying and full of local topographic mutations, stable locomotions of legged robots moving through such terrains in a fixed gait form can be hardly obtained. This problem becomes more severe as the size and weight of the robot increase. An ideal pre-planned gait changing method can also be hardly designed due to the same limitations. Aiming to solve the problem, a new kind of free gait controller applied to a large-scale hexapod robot with heavy load is developed. The controller consists of two parts, a free gait planner and a gait regulator. Based on the observed macro terrain changes, the free gait planner adopts the macro terrain recognition method and the status searching method for selecting the best leg support status automatically. The gait regulator is adopted for the correction of the selected status to cope with local topographic mutations. Detailed simulation experiments are presented to demonstrate that, with the designed controller, the adopted hexapod robot can change moving gaits automatically in terms of the terrain conditions and obtain stable locomotions through rough terrains.
This paper proposes a simple attitude trajectory optimization method to enhance the walking balance of a large-size hexapod robot. To achieve balance motion control of a large-size hexapod robot on different outdoor terrains, we planned the balance attitude trajectories of the robot during walking and introduced how leg trajectories are generated based on the planned attitude trajectories. While planning the attitude trajectories, high order polynomial interpolation was employed with attitude fluctuation counteraction considered. Constraints that the planned attitude trajectories must satisfy during walking were well-considered. The trajectory of the swing leg was well designed with the terrain attitude considered to improve the environmental adaptability of the robot during the attitude adjustment process, and the trajectory of the support leg was automatically generated to satisfy the demand of the balance attitude trajectories planned. Comparative experiments of the real large-size hexapod robot walking on different terrains were carried out to validate the effectiveness and applicability of the attitude trajectory optimization method proposed, which demonstrated that, compared with the currently developed balance motion controllers, the attitude trajectory optimization method proposed can simplify the control system design and improve the walking balance of a hexapod robot.
This paper proposes a control scheme inspired by the biological equilibrium point hypothesis (EPH) to enhance the motion stability of large-size legged robots. To achieve stable walking performances of a large-size hexapod robot on different outdoor terrains, we established a compliant-leg model and developed an approach for adapting the trajectory of the equilibrium point via contact force optimization. The compliant-leg model represents well the physical property between motion state of the robot legs and the contact forces. The adaptation approach modifies the trajectory of the equilibrium point from the force equilibrium of the system, and deformation counteraction. Several real field experiments of a large-size hexapod robot walking on different terrains were carried out to validate the effectiveness and feasibility of the control scheme, which demonstrated that the biologically inspired EPH can be applied to design a simple linear controller for a large-size, heavy-duty hexapod robot to improve the stability and adaptability of the motion in unknown outdoor environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.