Background Major depressive disorder (MDD) is a highly heterogeneous mental illness and a major public health problem worldwide. A large number of observational studies have demonstrated a clear association between MDD and coronary heart disease (CHD), and some studies have even suggested that the relationship is bidirectional. However, it was unknown whether any causal relationship existed between them and whether causality was bidirectional in such an instance. Thus, we aimed to determine whether there is a bidirectional causal relationship between major depressive disorders and coronary heart disease. Methods Our two-sample Bidirectional Mendelian Randomization Study consisted of two parts: forward MR analysis regarded MDD as exposure and CHD as the outcome, and reverse MR analysis considered CHD as exposure and MDD as the outcome. Summary data on MDD and CHD were obtained from the IEU Open GWAS database. After screening criteria(P < $$5\times {10}^{-8}$$ 5 × 10 - 8 ), 47 MDD-associated SNPs and 39 CHD-associated SNPs were identified. The inverse-variance weighted (IVW) method, ME-Egger regression, and weighted median method were used to estimate causality. In addition, sensitivity methods, including the heterogeneity test, horizontal pleiotropy test, and leave-one-out method, were applied to ensure the robustness of causal estimation. Results Based on the MR-Egger regression intercept test results, there did not appear to be any horizontal pleiotropy in this study (MDD: intercept = -0.0000376, P = 0.9996; CHD: intercept = -0.0002698, P = 0.920). Accordingly, IVW results suggested consistent estimates of causal effect values. The results showed that people with MDD increased the risk of CHD by 14.7% compared with those without MDD (OR = 1.147, 95%CI: 1.045–1.249, P = 0.009). But there was no direct evidence that CHD would increase the risk of MDD(OR = 1.008, 95%CI: 0.985–1.031, P = 0.490). The heterogeneity test and funnel plot showed no heterogeneity in 47 SNPs of MDD (Q = 42.28, $${I}^{2}$$ I 2 =0, P = 0.629), but there was heterogeneity in 39 SNPs of CHD (Q = 62.48, $${I}^{2}$$ I 2 =39.18%, P = 0.007). The leave-one-out method failed to identify instances where a single SNP was either biased toward or dependent on the causation. Conclusion Our study supports a one-way causal relationship between MDD and CHD, but there is no bidirectional causal relationship. MDD increases the risk of CHD, but there is no evidence that CHD increases the risk of MDD. Therefore, the influence of psychological factors should also be considered in the prevention and treatment of CHD. For MDD patients, it is necessary to prevent cardiovascular diseases.
Xin-Ji-Er-Kang (XJEK) inhibited cardiovascular remodeling in hypertensive mice in our previous studies. We hypothesized that XJEK may prevent isoproterenol (ISO)-induced myocardial hypertrophy (MH) in mice by ameliorating oxidative stress (OS) through a mechanism that may be related to the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathways. Forty SPF male Kunming mice were randomized into 5 groups (n = 8 mice per group): control group, MH group, MH + different doses of XJEK (7.5 g/kg/day and 10 g/kg/day), and MH + metoprolol (60 mg/kg/day). On the eighth day after drug treatment, electrocardiogram (ECG) and echocardiography were performed, the mice were sacrificed, and blood and heart tissues were collected for further analysis. XJEK administration markedly ameliorated cardiovascular remodeling (CR), as manifested by a decreased HW/BW ratio and CSA and less collagen deposition after MH. XJEK administration also improved MH, as evidenced by decreased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) levels. XJEK also suppressed the decreased superoxide dismutase (SOD) and catalase (CAT) activities and increased malondialdehyde (MDA) levels in serum of mice with MH. XJEK-induced oxidative stress may be related to potentiating Nrf2 nuclear translocation and HO-1 expression compared with the MH groups. XJEK ameliorates MH by activating the Nrf2/HO-1 signaling pathway, suggesting that XJEK is a potential treatment for MH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.