Molecular dynamic simulation is used to investigate the viscoelastic properties of n-hexadecane under oscillatory shear flow. Rheometric simulations of an ultra-thin molecular film are studied and compared with the results of a bulk simulation. Strain amplitude sweep tests at a fixed frequency show that strain thinning (the dynamic modulus monotonically decreases with increasing strain amplitude) exists at extreme strain for both bulk and thin film systems. Fourier analysis is performed to characterize the nonlinear behavior of the viscoelasticity. No even harmonic was found in our study even though wall slip occurs. Furthermore, we show that a Fourier series with odd harmonics can be used to perfectly describe the simulation results by plotting Lissajous loops. Shear wave propagation appears when the frequency is larger than a certain value. Moreover, the molecular orientation and molecular potential energies, including those for bonding potential, intra- and intermolecular van der Waals interactions are plotted against the strain amplitude to examine the changes in the microscopic structures with respect to the macroscopic thermodynamic states.
For highly viscous polymer melts, considerable fluid temperature rises produced by viscous heating can be a disturbing factor in viscosity measurements. By scrutinizing the experimental and simulated capillary pressure losses for polymeric liquids, we demonstrate the importance of applying a viscous heating correction to the shear viscosity, so as to correct for large errors introduced by the undesirable temperature rises. Specifically, on the basis of a theoretical derivation and 3-D nonisothermal flow simulation, an approach is developed for retrieving the equivalent shear viscosity in capillary rheometry, and we show that the shear viscosity can be evaluated by using the average fluid temperature at the wall, instead of the bulk temperature, as previously assumed. With the help of a viscous Cross model in analyzing the shear-dominated capillary flow, it is possible to extract the viscous heating contribution to capillary pressure loss, and the general validity of the methodology is assessed using the experiments on a series of thermoplastic melts, including polymers of amorphous, crystalline, and filler-reinforced types. The predictions of the viscous model based on the equivalent viscosity are found to be in good to excellent agreement with experimental pressure drops. For all the materials studied, a near material-independent scaling relation between the dimensionless temperature rise (Θ) and the Nahme number (Na) is found, Θ ~ Na0.72, from which the fluid temperature rise due to viscous heating as well as the resultant viscosity change can be predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.