The microelectromechanical system (MEMS) gyroscope has low measurement accuracy and large output noise; the useful signal is often submerged in the noise. A new denoising method of interval empirical mode decomposition (IEMD) is proposed. Firstly, the traditional EMD algorithm is used to decompose the signal into a finite number of intrinsic mode functions (IMFs). Based on the Bhattacharyya distance analysis and the characteristics of the autocorrelation function, a screening mechanism is proposed to divide IMFs into three categories: noise IMFs, mixed IMFs, and signal IMFs. Then, the traditional modelling filtering method is used to filter the mixed IMFs. Finally, the mixed IMFs after modelling and filtering and signal IMFs are reconstructed to obtain the denoised signal. In the experimental analysis, the static denoising experiment of the turntable, the Allan variance analysis, dynamic denoising experiment, and vehicle experiment are set up in this paper, which fully proves that the method has obvious advantages in denoising and greatly improves the quality of signal and the accuracy of the inertial navigation system solution.
Key nodes have a significant impact, both structural and functional, on complex networks. Commonly used methods for measuring the importance of nodes in complex networks are those using degree centrality, clustering coefficient, etc. Despite a wide range of application due to their simplicity, their limitations cannot be ignored. The methods based on degree centrality use only first-order relations of nodes, and the methods based on the clustering coefficient use the closeness of the neighbors of nodes while ignore the scale of numbers of neighbors. Local structural entropy, by replacing the node influence on networks with local structural influence, increases the identifying effect, but has a low accuracy in the case of high clustered networks. To identify key nodes in complex networks, a novel method, which considers both the influence and the closeness of neighbors and is based on local structural entropy and clustering coefficient, is proposed in this paper. The proposed method considers not only the information of the node itself, but also its neighbors. The simplicity and accuracy of measurement improve the significance of characterizing the reliability and destructiveness of large-scale networks. Demonstrations on constructed networks and real networks show that the proposed method outperforms other related approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.