The enhancement of the surface incident radiation on the walls of an externally-irradiated bubble tank photoreactor was studied and modeled by solving the radiation transport equation (RTE) in conjunction with the continuity, momentum and k-e turbulence equations. Computational fluid dynamic (CFD) simulation results were complemented with actinometric runs to determine the effect of the gas flow rate on the radiation loss by reflection at the surface of the gas-liquid mixture due to bursting of the bubbles. The model assumed that the gas-liquid mixture is a semitransparent medium where the light is scattered as a result of specular reflection and refraction when the light rays impinge on the air bubbles. The superficial reflectivity at the top of the gas-liquid mixture was linearly correlated with the superficial gas velocity. In particular, the simultaneous solution of the hydrodynamics and radiation transport equation using CFD allowed us to establish the relationship between the light scattering coefficient and the bubble size and the gas hold-up. The excellent agreement obtained between the experimental data and the CFD model validates the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.