The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies.
High-throughput CRISPR screens have shown great promise in functional genomics. We present MAGeCK-VISPR, a comprehensive quality control (QC), analysis, and visualization workflow for CRISPR screens. MAGeCK-VISPR defines a set of QC measures to assess the quality of an experiment, and includes a maximum-likelihood algorithm to call essential genes simultaneously under multiple conditions. The algorithm uses a generalized linear model to deconvolute different effects, and employs expectation-maximization to iteratively estimate sgRNA knockout efficiency and gene essentiality. MAGeCK-VISPR also includes VISPR, a framework for the interactive visualization and exploration of QC and analysis results. MAGeCK-VISPR is freely available at http://bitbucket.org/liulab/mageck-vispr.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0843-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.