Intelligent reflecting surfaces (IRSs) have emerged as a promising economical solution to implement cell-free networks. However, the performance gains achieved by IRSs critically depend on smartly tuned passive beamforming based on the assumption that the accurate channel state information (CSI) knowledge is available at the central processing unit (CPU), which is practically impossible. Thus, in this paper, we investigate the impact of the CSI uncertainty on IRS-assisted cell-free networks. We adopt a stochastic method to cope with the CSI uncertainty by maximizing the expectation of the sum-rate, which guarantees the robust performance over the average. Accordingly, an average sum-rate maximization problem is formulated, which is non-convex and arduous to obtain its optimal solution due to the coupled variables and the expectation operation with respect to CSI uncertainties. As a compromising approach, we develop an efficient robust joint design algorithm with low-complexity. Particularly, the original problem is equivalently transformed into a tractable form by employing algebraic manipulations. Then, the locally optimal solution can be obtained iteratively. We further prove that the CSI uncertainty has no direct impact on the optimizing of the passive reflecting beamforming. It is worth noting that the investigated scenario is flexible and general in communications, thus the proposed algorithm can act as a general framework to solve various sum-rate maximization problems. Simulation results demonstrate that IRSs can achieve considerable data rate improvement for conventional cell-free networks, and confirm the resilience of the proposed algorithm against the CSI uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.