Currently, spatiotemporal features are embraced by most deep learning approaches for human action detection in videos, however, they neglect the important features in frequency domain. In this work, we propose an end-to-end network that considers the time and frequency features simultaneously, named TFNet. TFNet holds two branches, one is time branch formed of three-dimensional convolutional neural network(3D-CNN), which takes the image sequence as input to extract time features; and the other is frequency branch, extracting frequency features through two-dimensional convolutional neural network(2D-CNN) from DCT coefficients. Finally, to obtain the action patterns, these two features are deeply fused under the attention mechanism. Experimental results on the JHMDB51-21 and UCF101-24 datasets demonstrate that our approach achieves remarkable performance for frame-mAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.