Autotoxicity is a widespread phenomenon in nature and is considered to be the main factor affecting new natural recruitment of plant populations, which was proven in many natural populations. Cinnamomum migao H. W. Li is an endemic medicinal woody plant species mainly distributed in Southwestern China and is defined as an endangered species by the Red Paper of Endangered Plants in China. The lack of seedlings is considered a key reason for population degeneration; however, no studies were conducted to explain its causes. C. migao contains substances with high allelopathic potential, such as terpenoids, phenolics, and flavonoids, and has strong allelopathic effects on other species. Therefore, we speculate that one of the reasons for C. migao seedling scarcity in the wild is that it exhibits autotoxic allelopathy. In this study, which was performed from the perspective of autotoxicity, we collected leaves, pericarp, seeds, and branches of the same population; we simulated the effects of decomposition and release of litter from these different anatomical parts of C. migao in the field; and we conducted 210-day control experiments on seedling growth, with different concentration gradients, using associated aqueous extracts. The results showed that the leaf aqueous extract (leafAE) significantly inhibited growth indicators and increased damage of the lipid structure of the cell membrane of seedlings, suggesting that autotoxicity from C. migao is a factor restraining seedling growth. The results of the analyses of soil properties showed that, compared with the other treatments, leafAE treatment inhibited soil enzyme activity and also had an impact on soil fungi. Although leafAE could promote soil fertility to some extent, it did not change the effect of autotoxic substances on seedling growth. We conclude that autotoxicity is the main obstacle inhibiting seedling growth and the factor restraining the natural regeneration of C. migao.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.