Highly efficient and stable semi-transparent CH3NH3PbI3 perovskite photovoltaic cells are realized by using an ITO/MoOx bilayer conductive oxide as the anode electrode with a cyclopenta[2,1-b;3,4-b']dithiophene (CT) based hole-transport material (HTM), which allows bifacial illumination from both sides of the electrodes. The wide bandgap MoOx thin film is not only to be an electron blocking layer, but also to be a passivation layer which can withstand the excessive energy bombardment during the magnetron sputtering process for the deposition of a high-quality ITO thin film. Atomic-force microscopy images, transmittance spectra and water-droplet contact angle images show that the interfacial contact between MoOx and hole transport layer (HTL) strongly influences the short-circuit current density (JSC) and fill factor (FF). The highest power conversion efficiency (PCE) values for the bifacial perovskite solar cells (0.16 cm2) and modules (11.7 cm2) are 16.38% and 14.96%, respectively. In addition, the PCE of the ITO/MoOx/CT-HTM based perovskite solar module decreases slowly toward a stable value (∼11%) for more than 700 h under wet environment conditions (70 ± 5 RH%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.