We propose the first black-box construction of non-malleable commitments according to the standard notion of non-malleability with respect to commitment. Our construction additionally only requires a constant number of rounds and is based only on (black-box use of) one-way functions. Prior to our work, no black-box construction of nonmalleable commitments was known (except for relaxed notions of security) in any (polynomial) number of rounds based on any cryptographic assumption. This closes the wide gap existent between black-box and non-black-box constructions for the problem of non-malleable commitments.Our construction relies on (and can be seen as a generalization of) the recent non-malleable commitment scheme of Goyal (STOC 2011). We also show how to get black-box constructions for a host of other cryptographic primitives. We extend our construction to get constant-round concurrent non-malleable commitments, constant-round multi-party coin tossing, and non-malleable statistically hiding commitments (satisfying the notion of non-malleability with respect to opening). All of the mentioned results make only a black-box use of one-way functions.Our primary technical contribution is a novel way of implementing the proof of consistency typically required in the constructions of non-malleable commitments (and other related primitives). We do this by relying on ideas from the "zeroknowledge from secure multi-party computation" paradigm of Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC 2007). We extend in a novel way this "computation in the head" paradigm (which can be though of as bringing powerful error-correcting codes into purely computational setting). To construct a nonmalleable commitment scheme, we apply our computation in the head techniques to the recent (constant-round) construction of Goyal. Along the way, we also present a simplification of the construction of Goyal where a part of the protocol is implemented in an information theoretic manner. Such a simplification is crucial for getting a black-box construction. This is done by making use of pairwise-independent hash functions and strong randomness extractors.We show that our techniques have multiple applications, as elaborated in the paper. Hence, we believe our techniques might be useful in other settings in future.Keywords-non-malleable commitments; black-box use of cryptographic primitives; computation in the head paradigm;
Abstract. We prove that achieving adaptive security from composing two general non-adaptively secure pseudo-random functions is impossible if and only if a uniform-transcript key agreement protocol exists.It is well known that proving the security of a key agreement protocol (even in a special case where the protocol transcript looks random to an outside observer) is at least as difficult as proving P = NP . Another (seemingly unrelated) statement in cryptography is the existence of two or more non-adaptively secure pseudo-random functions that do not become adaptively secure under sequential or parallel composition. In 2006, Pietrzak showed that at least one of these two seemingly unrelated statements is true. Pietrzak's result was significant since it showed a surprising connection between the worlds of public-key (i.e., "cryptomania") and private-key cryptography (i.e., "minicrypt"). In this paper we show that this duality is far stronger: we show that at least one of these two statements must also be false. In other words, we show their equivalence.More specifically, Pietrzak's paper shows that if sequential composition of two non-adaptively secure pseudo-random functions is not adaptively secure, then there exists a key agreement protocol. However, Pietrzak's construction implies a slightly stronger fact: If sequential composition does not imply adaptive security (in the above sense), then a uniform-transcript key agreement protocol exists, where by uniformtranscript we mean a key agreement protocol where the transcript of the protocol execution is indistinguishable from uniform to eavesdroppers. In this paper, we complete the picture, and show the reverse direction as well as a strong equivalence between these two notions. More specifically, as our main result, we show that if there exists any uniform-transcript key agreement protocol, then composition does not imply adaptive security. Our result holds for both parallel and sequential composition. Our implication holds based on virtually all known key agreement protocols, and can also be based on general complexity assumptions of the existence of dense trapdoor permutations. Full version appeared on ECCC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.