Genetically engineered Pseudomonas putida reporters (BMB-PL and BMB-ME), which, respectively, carried phnS-luxCDABE and merR-egfp cassette, were used to determine bioavailable phenanthrene and mercury. Over a spiked range of concentrations and aged for 6 days in red soil samples, the reporters were tested to determine the optimal assay conditions and the bioavailable phenanthrene (0-60 mg kg ) were evaluated by the signal of the relative fluorescent units and relative luminescence units. Single contamination was carried out and good correlations were obtained between signal strength and pollutant concentrations, whereas interference and bioavailability repression were observed in dual-contamination experiments. Other heavy metal ions at nanomolar level did not interfere with BMB-ME measurement while BMB-PL showed some response to other polycyclic aromatic hydrocarbons or their intermediate products during degradation. Comparing high-performance liquid chromatography methods with the bacterial reporters, both BMB-ME and BMB-PL appeared to have a detection limit (mercury \40 lg kg -1 ; phenanthrene \24 mg kg -1 ) similar to the instrumental analysis. Although physical parameters may affect the interaction of pollutants with bioreporter cells, advantages include the inherent biological relevance of the response, rapid response time, and potential for field deployment. Our results strongly suggest that the BMB-ME and BMB-PL bioreporters constitute an adaptable system for easily detecting the bioavailability of mercury and phenanthrene in the red soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.