With the development of societies, the exploitation of mountains and forests is increasing to meet the needs of tourism, mineral resources, and environmental protection. The point cloud registration, 3D modeling, and deformation monitoring that are involved in surveying large scenes in the field have become a research focus for many scholars. At present, there are two major problems with outdoor terrestrial laser scanning (TLS) point cloud registration. First, compared with strong geometric conditions with obvious angle changes or symmetric structures, such as houses and roads, which are commonly found in cities and villages, outdoor TLS point cloud registration mostly collects data on weak geometric conditions with rough surfaces and irregular shapes, such as mountains, rocks, and forests. This makes the algorithm that set the geometric features as the main registration parameter invalid with uncontrollable alignment errors. Second, outdoor TLS point cloud registration is often characterized by its large scanning range of a single station and enormous point cloud data, which reduce the efficiency of point cloud registration. To address the above problems, we used the NARF + SIFT algorithm in this paper to extract key points with stronger expression, expanded the use of multi-view convolutional neural networks (MVCNN) in point cloud registration, and adopted GPU to accelerate the matrix calculation. The experimental results have demonstrated that this method has greatly improved registration efficiency while ensuring registration accuracy in the registration of point cloud data with weak geometric features.
With the rapid development of the geographic information service industry, point cloud data are widely used in various fields, such as architecture, planning, cultural relics protection, mining engineering, etc. Despite that there are many approaches to collecting point clouds, we are facing the problem of point cloud holes caused by the inability of a 3D laser scanner to collect data completely in the narrow space of the mine access shaft. Thus, this paper uses RGB-D cameras to collect data and reconstruct the hole in the point cloud. We used a 3D laser scanner and RGB-D depth camera to collect the 3D point cloud data of the access shaft roadway. The maximum error was 2.617 cm and the minimum error was 0.031 cm by measuring the distance between the feature points, which satisfied the visualization repair of the missing parts of the 3D laser scanner data collection. We used the FPTH + ICP algorithm, ISS + ICP algorithm, SVD + ICP algorithm, and 3D-NDT algorithm to perform registration and fusion of the processed 3D point cloud and the original point cloud and finally repaired the hole. The study results show that the ISS + ICP registration algorithm had the most matching points and the lowest RMSE value of 13.8524 mm. In addition, in the closed and narrow roadway, the RGB-D camera was light and easy to operate and the point data acquired by it had relatively high precision. The three-dimensional point cloud of the repaired access shaft roadway has a good fit and can meet the repair requirements.
Kunming city is located in the middle of Yunnan Province. Due to large-scale groundwater exploitation and urban development in recent years, this area has been affected by surface subsidence. In this paper, Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) data are used to monitor the surface subsidence in Kunming city area for better analysis and understanding. The study used data of Sentinel-1A from 2018 to 2020 with atmospheric correction based on GACOS to calculate the average annual subsidence rate in Kunming city area, and the results show that the maximum subsidence rate is 48 mm/year. The subsidence obtained by InSAR is compared with the vertical deformation information obtained by eight GNSS stations in continuous operation in the study area. The subsidence rate trend show by the two methods is consistent, which further verifies the validity of InSAR data to reflect the local deformation. Experimental results shown that the eastern and northeastern Dianchi lake areas were affected by underground resources mining, and the induced surface subsidence characteristics were obvious, with the surface subsidence rate reachde 48 mm/year and 37 mm/year respectively. The Kunyang Phosphate Mine also had different degrees of mining subsidence disaster, with the maximum subsidence rate reached 36 mm/year. The subsidence rate of InSAR and GNSS has the same trend on the whole. However, GNSS sites are generally located in stable areas, the settlement amount obtained in the same time period is somewhat different from that of InSAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.