Dynamic stall control of a S809 airfoil is numerically investigated by implementing a co-flow jet (CFJ). The numerical methods of the solver are validated by comparing results with the baseline experiment as well as a NACA 6415-based CFJ experiment, showing good agreement in both static and dynamic characteristics. The CFJ airfoil with inactive jet is simulated to study the impact that the jet channel imposes upon the dynamic characteristics. It is shown that the presence of a long jet channel could cause a negative effect of decreasing lift and increasing drag, leading to fluctuating extreme loads in terms of drag and moment. The main focus of the present research is the investigation of the dynamic characteristics of the CFJ airfoil with three different jet momentum coefficients, which are compared with the baseline, giving encouraging results. Dynamic stall can be greatly suppressed, showing a very good control performance of significantly increased lift and reduced drag and moment. Analysis of the amplitude of variation in the aerodynamic coefficients indicates that the fluctuating extreme aerodynamic loads are significantly alleviated, which is conducive to structural reliability and improved life cycle. The energy consumption analysis shows that the CFJ concept is applicable and economical in controlling dynamic stall.
The geometric effects of Coanda trailing edges on the aerodynamic performance of an airfoil are numerically evaluated for a range of different freestream Mach numbers and momentum coefficients. A Circulation control (CC) airfoil with a circular trailing edge (ACTE) proves to have better control effectiveness at low subsonic freestream speeds (Mach = 0.1). A CC airfoil having an elliptic trailing edge (AETE) outperforms the ACTE at high subsonic flow conditions. The occurrence of C μ-stall for the AETE is greatly postponed, and meanwhile the maximum net lift coefficient increment achieved for the AETE (Δ C L = 0.51) is slightly higher than that of the ACTE (Δ C L = 0.50) at Mach 0.6. Compared to the ACTE, the AETE is found to have better control consistency at different operating velocities and better control stability when the Coanda jet is supersonic. Through careful consideration of the aerodynamic performance and the control effects, the most appropriate axial ratio for an AETE ellipse is within the interval from 1.5 to 2. Finally, the flow field instability phenomenon and the jet detachment induced by the supersonic Coanda jet are investigated. A self-sustained shock-wave instability phenomenon without jet detachment is first observed in this paper.
Abstract:A new partial circulation control (PCC) method is implemented on the blunt trailing edge DU97-Flatback airfoil, and compared with the traditional full circulation control (FCC) based on numerical analysis. When the Coanda jet is deactivated, PCC has an attractive advantage over FCC, since the design of PCC doesn't degrade aerodynamic characteristics of the baseline flatback section, in contrast to FCC, which is important in practical use in case of failure of the circulation control system. When the Coanda jet is activated, PCC also outperforms FCC in several respects. PCC can produce much higher lift coefficients than FCC over the entire range of angles of attack as well as the entire range of jet momentum coefficients under investigation, but with slightly higher drag coefficients. The flow field of PCC is less complex than that of FCC, indicating less energy dissipation in the main flow and hence less power expenditure for the Coanda jet. The aerodynamic figure of merit (AFM) and control efficiency for circulation control are defined, and results show that PCC has much higher AFM and control efficiency than FCC. It is demonstrated that PCC outperforms FCC in terms of effectiveness, efficiency and reliability for flow control in the blunt trailing edge wind turbine application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.