Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher for those filled with both functionalized BN (f-BN) and maleic anhydride grafted PP (PP-g-ma) due to the improved filler dispersion and better interfacial filler-matrix compatibility, which facilitated the development of more thermal paths. Theoretical models were also applied to predict the composite thermal conductivity in which the Nielsen model was found to fit well with the experimental results, and the estimated effective aspect ratio of fillers well corresponded to the degree of filler aggregation as observed in the morphological study.
Air cleaners are expected to improve the indoor air quality by removing the gaseous contaminants and fine particles. In our former work, the effects of the air cleaner on removing the uniformly distributed particles were numerically investigated. Based on those results, this work further explores the performances of the air cleaner in the reduction of two nonuniform particle distributions generated by smoking and coughing. The Lagrangian discrete trajectory model combined with the Eulerian fluid method is employed to simulate the airflow pattern and particle transport in a room. In general, the results show that the particle fates have been resulted from the interaction between the emitting source and the air cleaner. And the position of the air cleaner is a key parameter affecting the particle concentration, for which a shorter distance between the air cleaner and the human body corresponds to a lower concentration. Besides, the air velocity emitted from the human mouth and the orientation of the air cleaner can also influence the transport of particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.