Hyperspectral images (HSIs) contain spatially structured information and pixel-level sequential spectral attributes. The continuous spectral features contain hundreds of wavelength bands and the differences between spectra are essential for achieving fine-grained classification. Due to the limited receptive field of backbone networks, convolutional neural networks (CNNs)-based HSI classification methods show limitations in modeling spectral-wise long-range dependencies with fixed kernel size and a limited number of layers. Recently, the self-attention mechanism of transformer framework is introduced to compensate for the limitations of CNNs and to mine the long-term dependencies of spectral signatures. Therefore, many joint CNN and Transformer architectures for HSI classification have been proposed to obtain the merits of both networks. However, these architectures make it difficult to capture spatial–spectral correlation and CNNs distort the continuous nature of the spectral signature because of the over-focus on spatial information, which means that the transformer can easily encounter bottlenecks in modeling spectral-wise similarity and long-range dependencies. To address this problem, we propose a neighborhood enhancement hybrid transformer (NEHT) network. In particular, a simple 2D convolution module is adopted to achieve dimensionality reduction while minimizing the distortion of the original spectral distribution by stacked CNNs. Then, we extract group-wise spatial–spectral features in a parallel design to enhance the representation capability of each token. Furthermore, a feature fusion strategy is introduced to increase subtle discrepancies of spectra. Finally, the self-attention of transformer is employed to mine the long-term dependencies between the enhanced feature sequences. Extensive experiments are performed on three well-known datasets and the proposed NEHT network shows superiority over state-of-the-art (SOTA) methods. Specifically, our proposed method outperforms the SOTA method by 0.46%, 1.05% and 0.75% on average in overall accuracy, average accuracy and kappa coefficient metrics.
ZY1-02D is a Chinese hyperspectral satellite, which is equipped with a visible near-infrared multispectral camera and a hyperspectral camera. Its data are widely used in soil quality assessment, mineral mapping, water quality assessment, etc. However, due to the limitations of CCD design, the swath of hyperspectral data is relatively smaller than multispectral data. In addition, stripe noise and collages exist in hyperspectral data. With the contamination brought by clouds appearing in the scene, the availability is further affected. In order to solve these problems, this article used a swath reconstruction method of a spectral-resolution-enhancement method using ResNet (SRE-ResNet), which is to use wide swath multispectral data to reconstruct hyperspectral data through modeling mappings between the two. Experiments show that the method (1) can effectively reconstruct wide swaths of hyperspectral data, (2) can remove noise existing in the hyperspectral data, and (3) is resistant to registration error. Comparison experiments also show that SRE-ResNet outperforms existing fusion methods in both accuracy and time efficiency; thus, the method is suitable for practical application.
Robust control of attitude-orbit tracking system for flexible spacecraft is addressed using state and nonlinear disturbance observer-based control technique. A relative attitude-orbit-structure integrated dynamics model is derived for flexible spacecraft tracking maneuver, where environmental disturbances and parameter uncertainty are considered as lumped disturbance term. The relative position and attitude of the two spacecraft are described by the exponential coordinates on SE(3). A composite control technique is proposed for robust attitudeorbit tracking of a flexible spacecraft about a spacecraft under lumped disturbance by combining a state observer of modal parameter and nonlinear disturbance observer with an asymptotic tracking control. The vibration mode information and the lumped disturbance are estimated and compensated by the modal observer and the nonlinear disturbance observer respectively in the feedback link. Moreover, the stability of the composed control approach consisting of the asymptotic tracking control and multi-observer observer is guaranteed through Lyapunov method. The simulation results validate the composite control technique can effectively enhance disturbance attenuation ability, robust dynamics performance and the desired relative attitude tracking accuracy of a flexible spacecraft with multiple disturbances and parameter uncertainty.Mathematics Subject Classification (2020) MSC 05E15 · 15A30
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.