Lensless light-field imaging is the process to encode the light field information of object through an optical encoder, and then recover the light field information of object through a reconstruction algorithm. In traditional lens-based light field imaging, each microlens in microlens-array corresponds to an angular sampling, and it needs to adjust the microlensarray to alter the angular resolution. In this paper, a commercial holographic diffuser is used as an optical encoder, and a flexible overlapping segmentation method of angular sampling is proposed for the point spread function (PSF). The surface microstructures of holographic diffuser allow any region of it to encode and recover light information of object independently, corresponding to an angular sampling. Calibration of PSF for the lensless imaging system is done firstly, and encoded image of object is captured; then the PSF is divided into different regions as sub-PSFs, corresponding to different angular samplings; after that, light field images of object is reconstructed with corresponding sub-PSFs through reconstruction algorithm; with these light field images, digital refocusing can be achieved finally. Different from evenly segmentation of angular sampling in microlens-array, the overlapping segmentation method divides PSF into sub-PSFs while adjacent sub-PSFs overlap each other. This improves angular resolution of imaging system and ensures low error in reconstruction of light field images. Experiments show that, the overlapping segmentation method can guarantee the reconstruction accuracy of lensless light-field imaging system while flexibly adjusting and improving the angular resolution.
Nanostructures can induce light multireflection, enabling strong light absorption and efficient photocarrier generation. In this work, silicon nanostructures, including nanocylinders, nanotips, and nanoholes, were proposed as all-optical broadband THz modulators. The modulation properties of these modulators were simulated and compared with finite element method calculations. It is interesting to note that the light reflectance values from all nanostructure were greatly suppressed, showing values of 26.22%, 21.04%, and 0.63% for nanocylinder, nanohole, and nanotip structures, respectively, at 2 THz. The calculated results show that under 808 nm illumination light, the best modulation performance is achieved in the nanotip modulator, which displays a modulation depth of 91.63% with a pumping power of 60 mW/mm2 at 2 THz. However, under shorter illumination wavelengths, such as 532 nm, the modulation performance for all modulators deteriorates and the best performance is found with the nanohole-based modulator rather than the nanotip-based one. To further clarify the effects of the nanostructure and wavelength on the THz modulation, a graded index layer model was established and the simulation results were explained. This work may provide a further theoretical guide for the design of optically tunable broadband THz modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.