This study compared and characterized slicewood acetylation with acetic anhydride using conventional liquid phase, microwave, and vapor phase reactions. The results revealed that there were no significant differences in the flexural properties between the unmodified and acetylated slicewood, regardless of the reaction method used. Furthermore, findings concluded that the slicewood acetylated with a vapor phase reaction required less modifying agent to achieve high levels of weight percent gain (WPG). The correlations between the anti-swelling efficiency (ASE) and the WPG of the slicewood acetylated with a vapor phase reaction were higher than the conventional liquid phase and microwave reactions. The reactivity of the cellulose hydroxyl groups was sensitive to the C2 and C6 reactive sites for all three acetylation methods. However, the reactivity was more pronounced at the C2 position with a vapor phase reaction compared to the other two reactions. Nevertheless, slicewood acetylation with acetic anhydride was found to not have a significant influence on viscoelastic properties for any of the different reaction methods.
This study was compared and characterized two different alkali (potassium carbonate (PC) and potassium acetate (PA))-catalyzed acetylations of slicewood with vinyl acetate (VA) by a vapor phase reaction. The results revealed that the esterification reaction between VA and the hydroxyl groups of slicewood could be improved by using PC or PA as a catalyst. Additionally, a significant weight percent gain was obtained after VA acetylation with 5% of catalyst. Furthermore, the reactivity of the cellulose hydroxyl groups for VA acetylation was more pronounced at the C2 reactive site compared to acetylation with acetic anhydride. On the other hand, the apparent activation energy of thermal decomposition between 10% and 70% conversion is 174–183, 194–200, and 183–186 kJ/mol for unmodified slicewood and VA-acetylated slicewood with PC and PA, respectively. Accordingly, the thermal stability of the slicewood could be effectively enhanced by VA acetylation, especially for using the PC as a catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.