Background Elucidation of mechanisms underlying continuous training-related atrial fibrillation (AF) may inform formulation of novel therapeutic approaches and training method selection. This study was aimed at assessing mechanisms underlying continuous training-induced AF in an animal model. Methods Healthy New Zealand rabbits were divided into three groups (n=8 each), namely, control (C), and moderate intensity (M), and high intensity (H) continuous training according to treadmill speed. Atrial size andintrinsic and resting heart rates were measured by transthoracic echocardiography before, and 8 and 12 weeks after training. Using a Langendorff perfusion system, AF was induced by S1S2 stimulation and the induction rate was recorded. Atrial IK1 and IKAch ion current densities were recorded using whole-cell patch-clamp technique in isolated atrial myocytes. Changes in atrial Kir2.1, Kir2.2, Kir3.1, and Kir3.4 mRNA expression were assessed by reverse transcriptase-coupled polymerase chain reaction. Results After 8 and 12 weeks, Groups M and H vs. Group C had greater (all P < 0.05) atrial anteroposterior diameter; greater incidence of AF (60% and 90% vs. 45%, respectively; P < 0.05, also between Groups H and M); and greater atrial IKAch current density. In Group H, Kir2.1 and Kir2.2 mRNA expression in the left and right atria was increased (P < 0.05, vs. Groups C and M) as was left atrial Kir3.1 and Kir3.4 mRNA expression (P < 0.05, vs. Group C). Conclusion In a rabbit model, continuous training enlarges atrial diameter leading to atrial structural and electrical remodeling and increased AF incidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.