Microplastics (MPs) are one of the emerging contaminants in environmental media, and they have raised great concern because they are resistant to degradation and persist in ecosystems. Although numerous advanced technologies have been developed, suitable technologies are still lacking for degradation of widespread MPs in the natural environment. We have discovered that MPs can be degraded exceptionally rapidly in frozen environments. Taking polystyrene (PS) as an example, its degradation rate in ice (À 20 °C) is surprisingly competitive to most artificial technologies. PS particles are trapped and squeezed to achieve excited state ( 3 PS*) in the narrow space of the liquid layer between ice crystals, which further react with the highly concentrated dioxygen to selectively produce singlet oxygen ( 1 O 2 ). The 1 O 2 boosts PS oxidation in the liquid layer thus further causing accelerated degradation at freezing temperature. This finding offers a highly efficient pathway for degradation of MPs and it sheds light on an unusual MPs disposal mechanisms in nature.
Microplastics (MPs) are one of the emerging contaminants in environmental media, and they have raised great concern because they are resistant to degradation and persist in ecosystems. Although numerous advanced technologies have been developed, suitable technologies are still lacking for degradation of widespread MPs in the natural environment. We have discovered that MPs can be degraded exceptionally rapidly in frozen environments. Taking polystyrene (PS) as an example, its degradation rate in ice (À 20 °C) is surprisingly competitive to most artificial technologies. PS particles are trapped and squeezed to achieve excited state ( 3 PS*) in the narrow space of the liquid layer between ice crystals, which further react with the highly concentrated dioxygen to selectively produce singlet oxygen ( 1 O 2 ). The 1 O 2 boosts PS oxidation in the liquid layer thus further causing accelerated degradation at freezing temperature. This finding offers a highly efficient pathway for degradation of MPs and it sheds light on an unusual MPs disposal mechanisms in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.