We investigate the Clustered Steiner tree problem on metric graphs, which is a variant of the Steiner minimum tree problem. In this problem, the required vertices are partitioned into clusters, and the subtrees spanning different clusters must be disjoint in a feasible clustered Steiner tree. In this paper, it is shown that the problem is NPhard even if the inter-cluster tree and all the local topologies are given, where a local topology specifies the tree structure of required vertices in the same cluster. We show that the Steiner ratio of this problem is lower and upper bounded by three and four, respectively. We also propose a (ρ + 2)-approximation algorithm, where ρ is the approximation ratio for the Steiner minimum tree problem, and the approximation ratio can be improved to ρ + 1 if the local topologies are given. Two variants of this problem are also studied. When the goal is to minimize the inter-cluster cost and ignore the cost of local trees, the problem can be solved in polynomial time. But it is NP-hard if we ask for the minimum cost of local trees among all solutions with minimum inter-cluster cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.