Navigation technology enables indoor robots to arrive at their destinations safely. Generally, the varieties of the interior environment contribute to the difficulty of robotic navigation and hurt their performance. This paper proposes a transfer navigation algorithm and improves its generalization by leveraging deep reinforcement learning and a self-attention module. To simulate the unfurnished indoor environment, we build the virtual indoor navigation (VIN) environment to compare our model and its competitors. In the VIN environment, our method outperforms other algorithms by adapting to an unseen indoor environment. The code of the proposed model and the virtual indoor navigation environment will be released.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.