The four-body modified Coulomb-Born approximation including the internuclear interaction (MCB-NN) with a full quantum-mechanical method, is applied to investigate single ionization of helium by 2 MeV/amu C 6+ impact. The fully differential cross-sections (FDCS) are calculated for a variety of momentum transfers and ejected electron energies in the scattering plane. The obtained results are compared with the experimental data and the three-body distorted wave-eikonal initial state (3DW-EIS) results and we find that the magnitudes and the angular distribution of the FDCS is well reproduced by the MCB-NN theory for low ejected electron energy. Especially in the recoil region, the present MCB-NN results yield an excellent agreement with experiment.
The modified Coulomb-Born approximation with and without the internuclear interaction (MCB-NN and MCB) is used to calculate the fully differential cross sections (FDCS) for the single ionization of helium by 100 MeV/amu C 6+ impact. The effects of the internuclear interaction on the FDCS are examined in geometries. The results are compared with experimental data and theoretical predictions from a three-body distorted-wave (3DW) model and a time-dependent close-coupling model. It is shown that the present MCB-NN results are in good agreement with the experiments in the scattering plane and the MCB results qualitatively reproduce the experimental structure outside the scattering plane. In particular, the MCB theory predicts the 'double-peak' structure in the perpendicular plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.