Hydroxyapatite (HA) bioceramic scaffolds were fabricated by using digital light processing (DLP) based additive manufacturing. Key issues on the HA bioceramic scaffolds, including dispersion, DLP fabrication, sintering, mechanical properties, and biocompatibility were discussed in detail. Firstly, the effects of dispersant dosage, solid loading, and sintering temperature were studied. The optimal dispersant dosage, solid loading, and sintering temperature were 2 wt%, 50 vol%, and 1250 ℃, respectively. Then, the mechanical properties and biocompatibility of the HA bioceramic scaffolds were investigated. The DLP-prepared porous HA bioceramic scaffold was found to exhibit excellent mechanical properties and degradation behavior. From this study, DLP technique shows good potential for manufacturing HA bioceramic scaffolds.
The stereolithography‐based additive manufacturing of white‐colored Al2O3 and ZrO2 ceramics has been widely reported, whereas the stereolithography‐based additive manufacturing of gray‐colored SiC ceramic is very difficult and challenged. In this paper, the reasons for the difficulty which SiC ceramic facing during stereolithography were discussed and compared to Al2O3 and ZrO2 ceramics. The effects of particle size, solid loading, stereolithography parameters, and photoinitiator kind and concentration on the curing ability of SiC slurries were further studied in detail. Finally, complex‐shaped SiC ceramic green parts with high accuracy and high quality were successfully fabricated. This study demonstrated that the stereolithography‐based additive manufacturing had a great possibility for preparing gray‐colored SiC ceramics.
In this work, silicon nitride ceramic components with simple cuboid and complex honeycomb and lattice structures from preceramic polymers were fabricated by using digital light processing (DLP) based additive manufacturing and pyrolysis. The photosensitive precursor for DLP based additive manufacturing was prepared by mixing high ceramic yield polysilazane with commercial acrylic resin and photoinitiator. The material formulation and the structure of the green body were characterized by using FTIR. Si3N4 ceramic cuboid, 2D‐structured Si3N4 ceramic honeycomb, and 2D‐structured Si3N4 ceramic lattice with high precision were fabricated. The DLP‐prepared specimens were pyrolyzed at different temperatures, and the crystalline phases after pyrolysis were analyzed by using XRD. The optimal pyrolysis temperature was found to be 1400°C.microstructures were characterized by using SEM. The compressive behavior of the complex‐shaped Si3N4 ceramic structures was measured and discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.