Is the water in these minerals representative of the Earth's primitive upper mantle or did it come from melting events linked to crustal formation or to more recent metasomatic/refertilization events? During diamond formation, NAMs are encapsulated at hundreds of kilometers depth within the mantle, thereby possibly shielding and preserving their pristine water contents from re-equilibrating with fluids and melts percolating through the lithospheric mantle. Here we show that the NAMs included in diamonds from six locales on the Siberian Craton contain measurable and variable H 2 O concentrations from 2 to 34 parts per million by weight (ppmw) in olivine, 7 to 276 ppmw in clinopyroxene, and 11-17 ppmw in garnets. Our results suggest that if the inclusions were in equilibrium with the diamond-forming fluid, the water fugacity would have been unrealistically low. Instead, we consider the H 2 O contents of the inclusions, shielded by diamonds, as pristine representatives of the residual mantle prior to encapsulation, and indicative of a protogenetic origin for the inclusions. Hydrogen diffusion in the diamond does not appear to have modified these values significantly. The H 2 O contents of NAMs in mantle xenoliths represent some later metasomatic event(s), and are not always representative of most of the continental lithospheric mantle. Results from the present study also support the conclusions of Peslier et al. (2010a) and Novella et al. (2015) that the dry nature of the SCLM of a craton may provide stabilization of its thickened continental roots.
At the latest geodynamic stage that is characterized by forces and processes of the last 90 Ma the lithosphere of Asia has been reactivated due to four main force factors: 1) mantle melting anomalies, 2) subduction-related interaction between the Pacific plates and the continental eastern margin, 3) convergent interaction between India and the continental southern margin, and 4) quasiperiodic orbital variations of the Earth. The starting point of the latest geodynamic stage [Rasskazov, Chuvashova, 2013] is consistent with the change of the Earth's rotation due to the resonant interaction of its orbit with the orbit of the Mars in the time interval of 87-85 Ma [Ma et al., 2017].A mantle melting anomaly is expressed by volcanic eruptions on the earth's surface and low-velocity root in the mantle. Convective instability of the lower mantle at its lower or upper boundary generates a melting anomaly of the plume or transition layer type, respectively. Each is supposed to be primary, because of energetic relation to the original source that causes instability. A primary melting column might change due to relative motions of the lithosphere and underlying
The hydrocarbon-bearing formation of Miano gas field belongs to the Early Cretaceous and it is bounded by two shale intervals, which are considered as maximum flooding surfaces (MFS). The hydrocarbon-bearing interval includes two reservoir units: a tight gas reservoir and its overlying conventional reservoir. Core samples, borehole logs, and well production performance revealed that the two reservoirs present reversed trends in reservoir quality through the gas field without obvious barriers. The average shale volume of the tight gas reservoir changes from 24.3% to 12.2% and the average permeability changes from 32.65 mD to 0.02 mD from the south to north. However, the average effective porosity of the overlaying conventional reservoir increases from 20% to 26% and the average permeability increases from 10 mD to 300 mD. The reversed trends in the two reservoirs lead to challenges in production forecast and development well proposals in the tight gas reservoir. Therefore, reservoir characterization and a predictive reservoir model are essential for further exploitation of Miano gas field. The geological genesis analysis integrating cores, borehole logs, and three-dimensional (3D) seismic data reveals that the producing interval of the tight gas reservoir is tidal-influenced shore facies deposition with intergranular pore space reduced by mineral cementation during burial diagenesis, while the overlaying conventional reservoir is fluvial-influenced deltaic deposition with abundant, well-connected intergranular macropores, which leads to a better reservoir quality. A reservoir model containing both the tight gas reservoir and the conventional reservoir is constructed considering the reservoir nature understanding, and the accuracy of the model is confirmed by reservoir surveillance activities with the simulation model. The study will be critical to the further reservoir development and hydrocarbon production in Miano gas field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.