a b s t r a c tA Langevin piezoelectric transducer is used as a physical element for transmitting and receiving sound waves. The operating frequency of a transducer determines the distance that the sound wave can travel, so it is important to measure it. Due to the fact the structure of a transducer is quite complicated, it is quite difficult to estimate the precise physical parameters for the simulation model. Therefore, it takes a long time to measure the resonance frequency in the laboratory and fix the parameters by trial and error methods. This study applies a learning method to estimate a transducer frequency instead by trial and error experiments. The learning methods applied and compared including artificial neural network, support vector machine, C4.5, neuro-fuzzy, and ega-fuzzification. Compared with the theoretical one-dimensional model (simple lump element model), the results indicate that a learning method is an efficient way to estimate the piezoelectric transducer resonance frequency. The mega-fuzzification method is the best compared with other methods in this study.
The design and construction of wide-band and high efficiency acoustical projector has long been considered an art beyond the capabilities of many smaller groups. Langevin type piezoelectric transducers have been the most candidate of sonar array system applied in underwater communication. The transducers are fabricated, by bolting head mass and tail mass on both ends of stacked piezoelectric ceramic, to satisfy the multiple, conflicting design for high power transmitting capability. The aim of this research is to study the characteristics of Langevin type piezoelectric transducer that depend on different metal loading. First, the Mason equivalent circuit is used to model the segmented piezoelectric ceramic, then, the impedance network of tail and head masses is deduced by the Newton's theory. To obtain the optimal solution to a specific design formulation, PSPICE controlled-source programming techniques can be applied. A valid example of the application of PSPICE models for Langevin type transducer analysis is presented and the simulation results are in good agreement with the experimental measurements. acoustical projector, Langevin type, piezoelectric transducer, stacked piezoelectric ceramic, Mason model, controlled-source, PSPICE In many underwater acoustical applications, electromechanical systems are often composed of a group of identical piezoelectric ceramic segments that are interconnected "mechanically in series and electrically in parallel" [1] so as to produce reinforced mechanical motion for high-power sound generation. In an air backed Langevin type transducer construction application, some practical consideration is in demand [2] , e.g. the head mass is constructed as an alignment shank on the ceramic end and a large flat radiation surface to attain a large radiating loading in the water medium, the tail mass is configured as a horn structure to reduce the transmission power in the air medium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.