Hematopoietic cell transplantation has proven beneficial for various intractable diseases, but it remains unclear how hematopoietic stem/progenitor cells (HSPCs) home to the bone marrow (BM) microenvironment, initiate hematopoietic reconstitution, and maintain life‐long hematopoiesis. The use of newly elucidated molecular determinants for overall HSPC engraftment should benefit patients. Here, we report that modification of C‐X‐C chemokine receptor type 4 (Cxcr4) signaling in murine HSPCs does not significantly affect initial homing/lodging events, but leads to alteration in subsequent BM repopulation kinetics, with observations confirmed by both gain‐ and loss‐of‐function approaches. By using C‐terminal truncated Cxcr4 as a gain‐of‐function effector, we demonstrated that signal augmentation likely led to favorable in vivo repopulation of primitive cell populations in BM. These improved features were correlated with enhanced seeding efficiencies in stromal cell cocultures and altered ligand‐mediated phosphorylation kinetics of extracellular signal‐regulated kinases observed in Cxcr4 signal‐augmented HSPCs in vitro. Unexpectedly, however, sustained signal enhancement even with wild‐type Cxcr4 overexpression resulted in impaired peripheral blood (PB) reconstitution, most likely by preventing release of donor hematopoietic cells from the marrow environment. We thus conclude that timely regulation of Cxcr4/CXCR4 signaling is key in providing donor HSPCs with enhanced repopulation potential following transplantation, whilst preserving the ability to release HSPC progeny into PB for improved transplantation outcomes. Stem Cells 2014;32:1929–1942
Using quantitative PCR-based miRNA arrays, we comprehensively analyzed the expression profiles of miRNAs in human and mouse embryonic stem (ES), induced pluripotent stem (iPS), and somatic cells. Immature pluripotent cells were purified using SSEA-1 or SSEA-4 and were used for miRNA profiling. Hierarchical clustering and consensus clustering by nonnegative matrix factorization showed two major clusters, human ES/iPS cells and other cell groups, as previously reported. Principal components analysis (PCA) to identify miRNAs that segregate in these two groups identified miR-187, 299-3p, 499-5p, 628-5p, and 888 as new miRNAs that specifically characterize human ES/iPS cells. Detailed direct comparisons of miRNA expression levels in human ES and iPS cells showed that several miRNAs included in the chromosome 19 miRNA cluster were more strongly expressed in iPS cells than in ES cells. Similar analysis was conducted with mouse ES/iPS cells and somatic cells, and several miRNAs that had not been reported to be expressed in mouse ES/iPS cells were suggested to be ES/iPS cell-specific miRNAs by PCA. Comparison of the average expression levels of miRNAs in ES/iPS cells in humans and mice showed quite similar expression patterns of human/mouse miRNAs. However, several mouse- or human-specific miRNAs are ranked as high expressers. Time course tracing of miRNA levels during embryoid body formation revealed drastic and different patterns of changes in their levels. In summary, our miRNA expression profiling encompassing human and mouse ES and iPS cells gave various perspectives in understanding the miRNA core regulatory networks regulating pluripotent cells characteristics.
Neurodegeneration has been shown to induce microglial activation and the infiltration of monocyte-derived macrophages into the CNS, resulting in the coexistence of these two populations within the same lesion, though their distinct features remain elusive. To investigate the impact of rod photoreceptor degeneration on microglial activation, we generated a toxin-mediated genetic model of rod degeneration. Rod injury induced microglial proliferation and migration toward the photoreceptors. Bone marrow transplantation revealed the invasion of monocyte-derived macrophages into the retina, with microglia and the infiltrating macrophages showing distinct distribution patterns in the retina. By comparing the gene expression profiles of the activated microglia and infiltrating macrophages, we identified microglia-specific genes, including Ak1, Ctsf, Sall1, Phlda3, and Spns2. An analysis of Sall1gfp knock-in mice showed GFP expression in the microglia of developing and mature healthy retinas. DTA injury induced the expansion of Sall1gfp(+) microglia, whereas Ly6C(+) monocyte-derived macrophages were mostly Sall1gfp(-) , supporting the idea that Sall1 is exclusively expressed in microglia within the retinal phagocyte pool. We evaluated the contribution of microglia to the phagocyte pool in rd1 mutant retinas and found that Sall1gfp(+) microglia constituted the majority of phagocytes. A Sall1 deficiency did not affect microglial colonization of the retina and the cortex, but it did change their morphology from a ramified to a more amoeboid appearance. The morphological defects observed in Sall1-deficient microglia were not rescued by the presence of wild-type non-microglial cells, suggesting that Sall1 functions cell-autonomously in microglia. Taken together, our data indicate that Sall1 regulates microglial morphology during development. GLIA 2016;64:2005-2024.
Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic preconditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-a plays a role in HSC damage: TNF-a stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Shortterm incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-a-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. STEM CELLS 2017;35:989-1002 SIGNIFICANCE STATEMENTThis study shows the following: (a) depending on interval between TBI and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability; (b) elevated levels of TNF-a in inflamed BM is responsible for the effect; (c) TNF-a induces formation of ROS through an NADPH oxidase in donor HSCs, leading to impaired reconstitution ability; (d) Pre-incubation with an antioxidant NAC that suppresses TNF-a-stimulated ROS production successfully protects transplanted HSCs from BM inflammation. We eventually came up with the proposal of "in vivo stem cell protection" as a novel therapeutic concept in HSCT. These findings have implications for the basic HSC biology and for the improvement of an HSCT outcome for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.