The prostate and lung tumors were found to undergo rotations of more than 5° for about a third of the time. The lung tumor data represent the first 6 DoF tumor motion measured by kV images. The 6 DoF KIM method can enable rotational and translational adaptive radiation therapy and potentially reduce treatment margins.
For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and dosimetric errors, and resultant improved clinical outcomes, in cancer radiotherapy.
Clinical implementation of real-time KIM image guidance combined with gating for prostate cancer eliminates large prostate displacements during treatment delivery. Both in vivo KIM accuracy and precision are well below 1 mm.
The ability to monitor tumor motion without implanted markers is clinically advantageous for lung image-guided radiotherapy (IGRT). Existing markerless tracking methods often suffer from overlapping structures and low visibility of tumors on kV projection images. We introduce the short arc tumor tracking (SATT) method to overcome these issues. The proposed method utilizes multiple kV projection images selected from a nine-degree imaging arc to improve tumor localization, and respiratory-correlated 4D cone-beam CT (CBCT) prior knowledge to minimize the effects of overlapping anatomies. The 3D tumor position is solved as an optimization problem with prior knowledge incorporated via regularization. We retrospectively validated SATT on 11 clinical scans from four patients with central tumors. These patients represent challenging scenarios for markerless tumor tracking due to the inferior adjacent contrast. The 3D trajectories of implanted fiducial markers were used as the ground truth for tracking accuracy evaluation. In all cases, the tumors were successfully tracked at all gantry angles. Compared to standard pre-treatment CBCT guidance alone, trajectory errors were significantly smaller with tracking in all cases, and the improvements were the most prominent in the superior-inferior (SI) direction. The mean 3D tracking error ranged from 2.2–9.9 mm, which was 0.4–2.6 mm smaller compared to pre-treatment CBCT. In conclusion, we were able to directly track tumors with inferior visibility on kV projection images using SATT. Tumor localization accuracies are significantly better with tracking compared to the current standard of care of lung IGRT. Future work involves the prospective evaluation and clinical implementation of SATT.
Targeted alpha therapy (TAT) has the advantage of delivering therapeutic doses to individual cancer cells while reducing the dose to normal tissues. TAT applications relate to hematologic malignancies and now extend to solid tumors. Results from several clinical trials have shown efficacy with limited toxicity. However, the dosimetry for the labeled alpha particle is challenging because of the heterogeneous antigen expression among cancer cells and the nature of short-range, high-LET alpha radiation. This paper demonstrates that it is inappropriate to investigate the therapeutic efficacy of TAT by macrodosimetry. The objective of this work is to review the microdosimetry of TAT as a function of the cell geometry, source-target configuration, cell sensitivity, and biological factors. A detailed knowledge of each of these parameters is required for accurate microdosimetric calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.