This paper introduces a new form of energy-harvesting suspension that is integrated in a hydraulically interconnected suspension (HIS) system. The combined energy-harvesting and hydraulic interconnection features provide improved energy efficiency and vehicle dynamics performance. A half car model and a full car model are developed to validate the effectiveness of this design. Different dynamic input scenarios are used for model simulation, which includes single-wheel sinusoidal input, two-wheel sinusoidal input and double lane change test. The system performs better than a conventional suspension system in rolling dynamics in the cases of the single-wheel road input and double lane change test. The heaving dynamics is dependent on the frequency of the road input. The energy harvesting can generate up to 421 w at 4 Hz and 40 mm (peak to peak) road input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.