Purpose -The purpose of this paper is to develop a model for the use of mobile computing in the management of on-site construction information and communication. Design/methodology/approach -The research strategy contains three steps: a pilot study for the first stage, a survey that investigated the information needs of particular users and the nature of on-site information, and finally the development of a model and the validation and evaluation by operational scenarios.Findings -The developed model explores how mobile computing can be used on construction sites to manage on-site information. This model, firstly, identifies the key factors of mobile computer, wireless network, mobile application, construction personnel, construction information, and construction site; secondly it describes the relationships and interactions among these factors. Based on the model, the selection process for mobile computing strategy includes the clarification of information management process, the creations of overview for mobile computing solution, the identification of mobile computing strategy, and the selection of appropriate mobile computing technology. Originality/value -The developed model explores the general concepts and the internal relationships at the two areas of mobile computing and construction site information management. The application of the model can help users to select mobile computing strategies for managing on-site construction information based on the characteristics of their projects.
Efficiently storing electricity generated from renewable resources and desalinating brackish water are both critical for realizing a sustainable society. Previously reported desalination batteries need to work in alternate desalination/salination modes and also require external energy inputs during desalination. Here, we demonstrate a novel zinc–air battery-based desalination device (ZABD), which can desalinate brackish water and supply energy simultaneously. The ZABD consists of a zinc anode with a flowing ZnCl2 anolyte stream, a brackish water stream, and an air cathode with a flowing NaCl catholyte stream, separated by an anion-exchange membrane and a cation-exchange membrane, respectively. During the discharging, ions in brackish water move to the anolyte and catholyte, and they return to the feed steam during charging. The ZABD can desalt brackish water from 3000 ppm to the drinking water level at 120.1 ppm in one step and concurrently provide an energy output up to 80.1 kJ mol–1 under a discharge current density of 0.25 mA cm–2. Further, the ZABD can be charged/discharged over 20 cycles without significant performance deterioration, demonstrating its reversibility. Moreover, the desalination performances can be adjusted by varying current densities and are also influenced by the initial concentration of salt feeds. Besides, two ZABD devices were connected in series to drive 60 light-emitting diodes during the salt removal process without external power supply over 2000 min. Overall, this ZABD system demonstrates the potential for simultaneous water desalination and energy supply, which is suitable for many urgent situations.
Glehniae Radix (GR) is one of the major medicinal materials in China. The global demand for GR, especially in Asian countries, is constantly increasing, and the supply of wild medicinal materials falls short of the demand. Previous studies have shown that the production and processing modes of different value chains (VCs) impact the quality of medicinal materials. After 4 years of field and market research, this study includes interviews with stakeholders in the VCs, integrates different types of VCs, and further analyzes the VCs. GR characteristics were also assessed; the length and upper-middle diameter of the collected samples were measured, and the effective components of the samples were determined to rank the GR samples according to their quality. The effective components were further analyzed by the K-means clustering method. Concomitantly, the local price (the sales price of the place where the medicinal materials are produced) and market price (the sale price of medicinal materials in the market) of GR in Chifeng, Inner Mongolia, and Anguo, Hebei, were documented, and the ARIMA (Autoregressive Integrated Moving Average) method was used to predict the GR price. Ten VCs are summarized in this article. The results showed that the income of the staff at the beginning of the VC is inadequate. Regarding GR origin, Inner Mongolia GR showed higher quality than that of other areas. As a result, the price of medicinal materials is relatively high, which corresponds to the market price of the survey. The forecast results showed that the market price of GR would increase slightly in the future, which could provide reference for the selection of medicinal materials cultivation in the future. Through the study, it was found that the vertical integration in the VCs of GR could guarantee not only the benefit of the growers but also the traceability of the medicinal materials, which further guarantees the quality of the medicinal materials. However, the complex relationship between the cultivation area and the quality of the medicinal materials is not clear, which should be addressed in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.