In order to allow quadruped robots to adapt to the complex working environment in the field of fisheries and aquaculture, a new type of quadruped robot with linear and rotary driving is proposed, and the kinematic inverse solution of the leg of the quadruped robot is deduced. For achieving quadruped robot smooth walking, the straight gait of the quadruped robot is planned according to the stability margin principle of motion, so that the stability margin of the machine is 20 mm when three legs supporting it. The planning gait is simulated by ADAMS software, the kinematics and dynamics analysis of the four main driving mechanisms of the robot leg were carried out, and the feasibility of using the STEP5 driving function to execute the planning gait in the quadruped robot was verified. The theoretical and simulation curve analysis results show that, the quadruped robot according to the planned gait can complete the cycle and have a stable walking. The results of this study can provide a reference for the practical application of the new amphibious quadruped robot in the fields of complex and uneven ground in the field of fisheries and aquaculture to realize exploration, fishing and transportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.