With the hardware development of mobile devices, it is possible to build the recommendation models on the mobile side to utilize the fine-grained features and the real-time feedbacks. Compared to the straightforward mobile-based modeling appended to the cloudbased modeling, we propose a Slow-Fast learning mechanism to make the Mobile-Cloud Collaborative recommendation (MC 2 -SF) mutual benefit. Specially, in our MC 2 -SF, the cloud-based model and the mobile-based model are respectively treated as the slow component and the fast component, according to their interaction frequency in real-world scenarios. During training and serving, they will communicate the prior/privileged knowledge to each other to help better capture the user interests about the candidates, resembling the role of System I and System II in the human cognition. We conduct the extensive experiments on three benchmark datasets and demonstrate the proposed MC 2 -SF outperforms several state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.