Motifs have been recognized as basic network blocks and are found to be quite powerful in modeling certain patterns. Generally speaking, local characteristics of big networks could be reflected in network motifs. Over the years, motifs have attracted a lot of attention from researchers. However, most current literature reviews on motifs generally focus on the field of biological science. In contrast, here we try to present a comprehensive survey on motifs in the context of big networks. We introduce the definition of motifs and other related concepts. Big networks with motif-based structures are analyzed. Specifically, we respectively analyze four kinds of networks, including biological networks, social networks, academic networks, and infrastructure networks. We then examine methods for motif discovery, motif counting, and motif clustering. The applications of motifs in different areas have also been reviewed. Finally, some challenges and open issues in this direction are discussed.INDEX TERMS Network motif, motif counting, motif discovery, motif clustering, network science.
COVID-19 has spread all over the world, having an enormous effect on our daily life and work. In response to the epidemic, a lot of important decisions need to be taken to save communities and economies worldwide. Data clearly plays a vital role in effective decision making. Data-driven decision making uses data related evidence and insights to guide the decision making process and to verify the plan of action before it is committed. To better handle the epidemic, governments and policy making institutes have investigated abundant data originating from COVID-19. These data include those related to medicine, knowledge, media, etc. Based on these data, many prevention and control policies are made. In this survey paper, we summarize the progress of data-driven decision making in the response to COVID-19, including COVID-19 prevention and control, psychological counselling, financial aid, work resumption, and school re-opening. We also propose some current challenges and open issues in data-driven decision making, including data collection and quality, complex data analysis, and fairness in decision making. This survey paper sheds light on current policy making driven by data, which also provides a feasible direction for further scientific research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.