As architecture, systems, and data management communities pay greater attention to innovative big data systems and architecture, the pressure of benchmarking and evaluating these systems rises. However, the complexity, diversity, frequently changed workloads, and rapid evolution of parison with the traditional benchmarks: including PAR-SEC, HPCC, and SPECCPU, big data applications have very low operation intensity, which measures the ratio of the total number of instructions divided by the total byte number of memory accesses; Second, the volume of data input has non-negligible impact on micro-architecture characteristics, which may impose challenges for simulation-based big data architecture research; Last but not least, corroborating the observations in CloudSuite and DCBench (which use smaller data inputs), we find that the numbers of L1 instruction cache (L1I) misses per 1000 instructions (in short, MPKI) of the big data applications are higher than in the traditional benchmarks; also, we find that L3 caches are effective for the big data applications, corroborating the observation in DCBench.
An algorithm based on wavelet transforms (WT's) has been developed for detecting ECG characteristic points. With the multiscale feature of WT's, the QRS complex can be distinguished from high P or T waves, noise, baseline drift, and artifacts. The relation between the characteristic points of ECG signal and those of modulus maximum pairs of its WT's is illustrated. By using this method, the detection rate of QRS complexes is above 99.8% for the MIT/BIH database and the P and T waves can also be detected, even with serious baseline drift and noise.
Most traditional text clustering methods are based on "bag of words" (BOW) representation based on frequency statistics in a set of documents. BOW, however, ignores the important information on the semantic relationships between key terms. To overcome this problem, several methods have been proposed to enrich text representation with external resource in the past, such as WordNet. However, many of these approaches suffer from some limitations: 1) WordNet has limited coverage and has a lack of effective word-sense disambiguation ability; 2) Most of the text representation enrichment strategies, which append or replace document terms with their hypernym and synonym, are overly simple. In this paper, to overcome these deficiencies, we first propose a way to build a concept thesaurus based on the semantic relations (synonym, hypernym, and associative relation) extracted from Wikipedia. Then, we develop a unified framework to leverage these semantic relations in order to enhance traditional content similarity measure for text clustering. The experimental results on Reuters and OHSUMED datasets show that with the help of Wikipedia thesaurus, the clustering performance of our method is improved as compared to previous methods. In addition, with the optimized weights for hypernym, synonym, and associative concepts that are tuned with the help of a few labeled data users provided, the clustering performance can be further improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.