Lithium nitrate (LiNO3) is known as an important electrolyte additive in lithium-sulfur (Li-S) batteries. The prevailing understanding is that LiNO3 reacts with metallic lithium anode to form a passivation layer which suppresses redox shuttles of lithium polysulfides, enabling good rechargeability of Li-S batteries. However, this view is seeing more challenges in the recent studies, and above all, the inability of inhibiting polysulfide reduction on Li anode. A closely related issue is the progressive reduction of LiNO3 on Li anode which elevates internal resistance of the cell and compromises its cycling stability. Herein, we systematically investigated the function of LiNO3 in redox-shuttle suppression, and propose the suppression as a result of catalyzed oxidation of polysulfides to sulfur by nitrate anions on or in the proximity of the electrode surface upon cell charging. This hypothesis is supported by both density functional theory calculations and the nitrate anions-suppressed self-discharge rate in Li-S cells. The catalytic mechanism is further validated by the use of ruthenium oxide (RuO2, a good oxygen evolution catalyst) on cathode, which equips the LiNO3-free cell with higher capacity and improved capacity retention over 400 cycles.
Forest can be taken as a natural therapy to alleviate perceived anxiety of visitors. Given the geographical difference between urban and rural forest environments, little is known about the urban forest therapy effect of anxiety alleviation with reference to the rural forest. In this study, forty-three university students (aged from 19 to 23) were recruited as participants to visit the forest parks at urban and rural areas of Guiyang City on 21 and 23 December 2016. The forest experience was separated by four sceneries. Participants were asked to complete questionnaires by self-evaluating specific anxiety change from 12 questions with scores from 1 to 10 at both entrance and exit of the parks. The Wilcoxon signed-rank test and paired t-test were used to compare the change of anti-anxiety scores during forest bathing and between urban and rural forests, respectively. Results revealed that forest bathing in the urban park can alleviate the anxiety from financial state (P = 0.0028), exam-pass pressure (P = 0.0040) and love-affair relationship (P = 0.0286). Although rural forest bathing can also alleviate the anxiety from financial state (P = 0.0222), meanwhile, it maintained the anxiety about campus life (P < 0.0001). Forest tree richness tended to be higher in the rural forest park than in the urban one, which in contrast decreased the anxiety alleviation from inter-communication in the rural forest park (P = 0.0487). Principle component analysis indicated that participants tended to perceive more decline of anxiety from social contact in the urban forest. In conclusion, university students were recommended to pay a short visit to the urban forest with partners if they felt anxious about personal affairs and felt necessary to talk with others. For general people's visiting, urban forest trees can be controlled in diversity to some extent to look orderly and alleviate perceived anxiety.
Victory onion (Allium victorialis) is an edible vegetation that has significant value as a non-structural carbohydrate and secondary metabolite supplier. Easily measured leaf variables will be useful to predict for the flexible adjustment of physiochemical parameters in a cultural regime in plant factory conditions. Red, green, and blue light-emitting diode (LED) spectra were used to culture victory onion sprouts. Compared to the green-light spectrum, the red-light spectrum promoted leaf width and area, specific leaf area, and dry mass, water content, fine root growth, and starch accumulation in shoots, but lowered concentrations of total flavonoids and saponins. Sprouts had their shoots cut, but there were limited interactive effects with light spectra on most variables. In general, shoot-cutting depressed growth of leaf morphology, shoot weight, water content, and soluble sugar content, but enhanced accumulation of secondary metabolites. We did not find any relationship between leaf variables and secondary metabolites. Instead, wider leaves with a larger area generally had greater dry mass, water content, and soluble sugar accumulation. Leaves with deeper green colours generally had the opposite effects.
Lighting spectrum is one of the key factors that determine biomass production and secondary-metabolism accumulation in medicinal plants under artificial cultivation conditions. Ficus hirta and Alpinia oxyphylla seedlings were cultured with blue (10% red, 10% green, 70% blue), green (20% red, 10% green, 30% blue), and red-enriched (30% red, 10% green, 20% blue) lights in a wide bandwidth of 400-700 nm. F. hirta seedlings had lower diameter, fine root length, leaf area, biomass, shoot nutrient (N) and phosphorus concentrations in the blue-light spectrum compared to the red- and green-light spectra. In contrast, A. oxyphylla seedlings showed significantly higher concentrations of foliar flavonoids and saponins in red-light spectrum with rare responses in N, chlorophyll, soluble sugars, and starch concentrations. F. hirta is easily and negatively impacted by blue-light spectrum but A. oxyphylla is suitably used to produce flavonoid and saponins in red-light spectrum across a wide bandwidth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.