The current news information from different media websites has posed a serious problem, i.e., it is very difficult to obtain the satisfactory news contents from the measured data information. There have been some researches on news recommendation to improve the experience of users. In spite of this, they always need the further improvement because the news information has showed the explosive increasing way. Therefore, this paper studies knowledge graph and graph neural network (GNN) based news recommendation algorithm with edge computing consideration. At first, the knowledge graph is used for the knowledge extraction. Then, GNN is used to train the extracted features to complete the news recommendation algorithm. Finally, the edge computing is used to offload the high volumes of traffic to the edge server for the news recommendation computation. Compared with two baselines, the proposed algorithm is more efficient, increasing accuracy rate by 2.73% and 9.94% respectively, and decreasing response time by 84.27% and 87.58 respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.