An integrated Finite Element Method (FEM) model is proposed to investigate the dynamic seabed response for several specific pipeline layouts and to simulate the pipeline stability under waves loading. In the present model, the Reynolds-Averaged Navier-Stokes (RANS) equations are used to describe the wave motion in a fluid domain, while the seabed domain is described using the Biot's poro-elastic theory. The interface between water and air is tracked by conservative Level Set method (LSM). The FEM and backward differentiation formula (BDF) are applied for spatial and temporal discretization respectively in the present model. One-way coupling is used to integrate flow and seabed models. The present model is firstly validated using several available laboratory experiments. It is then further extended to practical engineering applications, including the dynamic seabed response for the pipeline mounted on a flat seabed or inside a trench. The results show that the pipeline buried to a certain depth is better protected than that under partially buried in terms of transient liquefaction . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 1 An integrated numerical model for wave-soil-pipeline interactions seabed response for several specific pipeline layouts and to simulate the pipeline stability under 11 waves loading. In the present model, the Reynolds-Averaged Navier-Stokes (RANS) equations are 12 used to describe the wave motion in a fluid domain, while the seabed domain is described using the
This paper proposes a two-dimensional (2D) coupled model for wave and currentseabed-pipeline interactions to examine oscillatory non-cohesive soil liquefaction around a partially buried pipeline in a trench. Unlike previous studies, two new features are included in this model: (1) wave-current interactions around the pipeline; and (2) fully coupled processes for the wave and current-seabed-pipeline system. In this study, the Reynolds Averaged Navier-Stokes (RANS) equations are applied to simulate the flow field around the pipeline, and Biot's poro-elastic theory for porous media is imposed to govern the soil response due to the wave-current loading. After being validated using data available in the literature, the 2D model is used to investigate the effects of the current velocity, the soil properties, and the wave characteristics on oscillatory non-cohesive soil liquefaction. Using the model, a function for the critical backfill thickness and the wave steepness under various flow and soil conditions is proposed to facilitate engineering practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.