Countercurrent flow limitation (CCFL) refers to an important class of gravity-induced hydrodynamic processes that impose a serious restriction on the operation of gas–liquid two-phase systems. In a nuclear power plant, CCFL may occur in the liquid level measurement system where an orifice is applied in the pipeline, which may introduce error into the level measurement system. CCFL can occur in horizontal, vertical, inclined, and even much more complicated geometric patterns, and the hot-leg channel flow passage has been widely investigated; however, a pipeline with variable cross-sections, including an orifice, has not yet been investigated. An experimental investigation has been conducted in order to identify the phenomenon, pattern, and mechanism of CCFL onset in this type of geometry. Both visual and quantified experiments were carried out. A high-speed camera was applied to capture the flow pattern. Visual experiments were implemented at atmospheric pressure, while quantified pressurizer experiments were implemented at higher pressures. It was determined that if the condensate drainage is low and the liquid level is also low, with a stable stratified flow upstream of the orifice, there is no oscillation of the differential pressure. However, at higher condensate drainage levels, when the liquid level increases, a stratified wavy flow occurs. One of these waves can suddenly rise upstream of the orifice to choke it, which subsequently gives rise to differential pressure across the orifice, with periodic variation. This pattern alternately features stratified flow, stratified wavy flow, and slug flow, which indicates the occurrence of CCFL. The CCFL occurring under these experimental conditions can be expressed as a Wallis type correlation, where the coefficients m and C are 0.682 and 0.601, respectively.
Nuclear power plants (NPPs) produce large amounts of spent fuel while generating electricity. After the spent fuel is taken out of the reactor core, it still has a high decay heat and needs to be cooled for years or even decades before it can be reprocessed or buried deeply. Due to the long storage period of spent fuel, storage safety evaluation is a concern. In this regard, cooling systems are critical for the safe storage of spent fuel. Here, the research progress of cooling methods for spent fuel pools (SFPs) is reviewed, and the structural characteristics, application limitations and heat transfer performance of active and passive cooling technologies under accident conditions are discussed in detail. Moreover, future developments of SFPs are discussed, and the results of this review confirm that there is a great deal of research scope to improve the cooling performance and safety of spent fuel. This paper aims to provide a reference guide for engineers and will be highly beneficial to researchers engaged in spent fuel storage.
Gas–liquid two-phase countercurrent flow limitation (CCFL) phenomena widely exist in nuclear power plants. In particular, the gas–liquid countercurrent flow limitation phenomena in a pressurized water reactor (PWR) during a loss-of-coolant accident (LOCA) or a small-break loss-of-coolant accident (SBLOCA) play an important role in nuclear reactor safety research. Over several decades, a series of experimental investigations and numerical studies have been carried out to study the CCFL phenomena in a PWR. For the experimental investigations, numerous experiments have been conducted, and different CCFL mechanisms and CCFL characteristics have been obtained in various test facilities simulating different scenarios in a PWR. The CCFL phenomena are affected by many factors, such as geometrical characteristics, liquid flow rates, and fluid properties. For the numerical studies, more and more numerical models were presented and applied to the calculations of two-phase countercurrent flow over the past several decades. It is considered that the computational fluid dynamics (CFD) tools can simulate most of the two-phase flow configurations encountered in nuclear power plants. In this paper, the experimental investigations and the numerical studies on two-phase countercurrent flow limitation in a PWR are comprehensively reviewed. This review provides a further understanding of CCFL in a PWR and gives directions regarding future studies. It is found that relatively fewer investigations using steam–water under high system pressures are performed due to the limitation of the test facilities and test conditions. There are a number of numerical studies on countercurrent two-phase flow in a PWR hot leg geometry, but the simulations in other flow channels were relatively rare. In addition, almost all of the numerical simulations do not include heat and mass transfer. Thus, it is necessary to investigate the effects of heat and mass transfer experimentally and numerically. Furthermore, it is of significance to perform numerical simulations for countercurrent two-phase flow with a fine computational grid and suitable models to predict the formation of small waves and the details in two-phase flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.