Mutant-selective KRAS G12C inhibitors, such as MRTX849 (adagrasib) and AMG 510 (sotorasib), have demonstrated efficacy in KRAS G12C -mutant cancers including non-small cell lung cancer (NSCLC). However, mechanisms underlying clinical acquired resistance to KRAS G12C inhibitors remain undetermined. To begin to define the mechanistic spectrum of acquired resistance, we describe a KRAS G12C NSCLC patient who developed polyclonal acquired resistance to MRTX849 with the emergence of 10 heterogeneous resistance alterations in serial cell-free DNA spanning four genes (KRAS, NRAS, BRAF, MAP2K1), all of which converge to reactivate RAS-MAPK signaling. Notably, a novel KRAS Y96D mutation affecting the switch-II pocket, to which MRTX849 and other inactive-state inhibitors bind, was identified that interferes with key protein-drug interactions and confers resistance to these inhibitors in engineered and patientderived KRAS G12C cancer models. Interestingly, a novel, functionally distinct tri-complex KRAS G12C active-state inhibitor RM-018 retained the ability to bind and inhibit KRAS G12C/Y96D and could overcome resistance.
STATEMENT OF SIGNIFICANCEIn one of the first reports of clinical acquired resistance to KRAS G12C inhibitors, our data suggest polyclonal RAS-MAPK reactivation as a central resistance mechanism. We also identify a novel KRAS switch-II pocket mutation that impairs binding and drives resistance to inactive-state inhibitors but is surmountable by a functionally-distinct KRAS G12C inhibitor.Research.
Purpose: KRAS-mutant lung cancers have been recalcitrant to treatments including those targeting the MAPK pathway. Covalent inhibitors of KRAS p.G12C allele allow for direct and specific inhibition of mutant KRAS in cancer cells. However, as for other targeted therapies, the therapeutic potential of these inhibitors can be impaired by intrinsic resistance mechanisms. Therefore, combination strategies are likely needed to improve efficacy. Experimental Design: To identify strategies to maximally leverage direct KRAS inhibition we defined the response of a panel of NSCLC models bearing the KRAS G12C-activating mutation in vitro and in vivo. We used a second-generation KRAS G12C inhibitor, ARS1620 with improved bioavailability over the first generation. We analyzed KRAS downstream effectors signaling to identify mechanisms underlying differential response. To identify candidate combination strategies, we performed a high-throughput drug screening across 112 drugs in combination with ARS1620. We validated the top hits in vitro and in vivo including patient-derived xenograft models. Results: Response to direct KRAS G12C inhibition was heterogeneous across models. Adaptive resistance mechanisms involving reactivation of MAPK pathway and failure to induce PI3K-AKT pathway inactivation were identified as likely resistance events. We identified several model-specific effective combinations as well as a broad-sensitizing effect of PI3K-AKT-mTOR pathway inhibitors. The G12CiþPI3Ki combination was effective in vitro and in vivo on models resistant to single-agent ARS1620 including patient-derived xenografts models. Conclusions: Our findings suggest that signaling adaptation can in some instances limit the efficacy of ARS1620 but combination with PI3K inhibitors can overcome this resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.