Background/objectives To investigate the relationship between the cross-sectional visceral adipose tissue (VAT) areas at different anatomic sites and the total VAT volume in a healthy Chinese population using quantitative computed tomography (QCT), and to identify the optimal anatomic site for a single slice to estimate the total VAT volume. Subjects/methods A total of 389 healthy Chinese subjects aged 19–63 years underwent lumbar spine QCT scans. The cross-sectional area of total adipose tissue and VAT were measured using the tissue composition module of the software (QCT Pro, Mindways) at each intervertebral disc level from T12/L1 to L5/S1, as well as at the umbilical level. The total VAT volume was defined as the fat areas multiplied by the height of vertebral body for all six slices. Statistical analysis was performed to determine the correlation between single-slice VAT areas and the total VAT volume. Moreover, the optimal anatomic site for a single slice to estimate the total VAT volume was identified by multiple regression analysis. Results The cross-sectional area of VAT and subcutaneous adipose tissue (SAT) measured at each anatomic site was all highly correlated with the total VAT volume and the total SAT volume (r = 0.89–0.98). Additionally, the VAT area measured at the L2/L3 level showed the strongest correlation with the total VAT volume (r = 0.98, P < 0.001). Covariates including age, gender, BMI, waist, and hypertension make a slight effect on the prediction of the total VAT volume. Conclusion It is feasible to perform measurements of VAT area on a single slice at L2/L3 level for estimating the total VAT volume.
ObjectiveTo investigate the bone mineral density (BMD) of cervical vertebrae in a population-stratified manner and correlate with that of the lumbar vertebrae.Materials and MethodsFive hundred and ninety-eight healthy volunteers (254 males, 344 females), ranging from 20 to 64 years of age, were recruited for volumetric BMD (vBMD) measurements by quantitative computed tomography. Basic information (age, height, weight, waistline, and hipline), and vBMD of the cervical and lumbar vertebrae (C2–7 and L2–4) were recorded. Comparisons among sex, age groups and different levels of vertebrae were analyzed using analysis of variance. Linear regression was performed for relevance of different vertebral levels.ResultsThe vBMD of cervical and lumbar vertebrae was higher in females than males in each age group. The vBMD of the cervical and lumbar vertebrae in males and the vBMD of lumbar vertebrae in females decreased with aging. In each age group, the vBMD of the cervical vertebrae was higher than that of the lumbar vertebrae with gradual decreases from C2 to C7 except for C3; moreover, the vBMD of C6 and C7 was significantly different from that of C2–5. Correlations of vBMD among different cervical vertebrae (females: r = 0.62–0.94; males: r = 0.63–0.94) and lumbar vertebrae (males: r = 0.93–0.98; females: r = 0.82–0.97) were statistically significant at each age group.ConclusionThe present study provided normative data of cervical vertebrae in an age- and sex-stratified manner. Sex differences in vBMD prominently vary with age, which can be helpful to design a more comprehensive pre-operative surgical plan.
SummaryBackground/ObjectiveAsporin is associated with osteoarthritis and lumbar disk degeneration. Previous studies in chondrocytes showed that asporin can bind to transforming growth factor-β1 (TGF-β1) and downregulate matrix biosynthesis. However, this has not been studied in intervertebral disk (IVD) cells. This study aimed to inspect the expression of asporin under TGF-β1 stimulation and its effect on TGF-β1-induced matrix biosynthesis in human intervertebral annulus cells.MethodsHuman intervertebral annulus cells were obtained from the pathological region of IVD in eight patients. After primary culture and redifferentiation in alginate beads, cells were reseeded and treated with different concentrations (5 ng/mL, 10 ng/mL, and 15 ng/mL) of TGF-β1 for up to 24 hours. Total RNA extracted from the cells and those with asporin knockdown were subjected to real-time polymerase chain reaction analysis to examine the expression of asporin and extracellular matrix genes.ResultsTGF-β1 stimulation induces asporin transcription significantly in a dose- and time-dependent manner. Knockdown of endogenous asporin leads to the upregulated expression of collagen II alpha 1 and aggrecan.ConclusionOur results have verified a functional feedback loop between TGF-β1 and asporin in human intervertebral annulus cells indicating that TGF-β1-induced annulus matrix biosynthesis can be significantly upregulated by knockdown of asporin. Therefore, asporin could be a potential new therapeutic target and inhibition of asporin could be adopted to enhance the anabolic effect of TGF-β1 in human intervertebral annulus cells in degenerative IVD diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.