A Supervised A daptive Hamming Net (SAHN) is introduced for incremental learning of recognition categories in response to arbitrary sequences of multiple-valued or binary-valued input patterns. The binary-valued SAHN derived from the Adaptive Hamming Net (AHN) is functionally equivalent t o a simplied ARTMAP, which is specically designed to establish many-to-one mappings. The generalization to learning multiple-valued input patterns is achieved by incorporating multiple-valued logic into the AHN. In this paper, we examine some useful properties of learning in a P-valued SAHN. In particular, an upper bound is derived on the number of epochs required by the P-valued SAHN to learn a list of input-output pairs that is repeatedly presented to the architecture. Furthermore, we connect the P-valued SAHN with the binary-valued SAHN via the thermometer code. Fast learning: When the Jth node in MAXNET is chosen, the template W J is updated according to the equation W new J = W old J u X :The adaptive w eight w J is updated according to the equationŵ new J
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.