In December 2019, an outbreak of pneumonia of unknown origin was reported in Wuhan, Hubei Province, China. Pneumonia cases were epidemiologically linked to the Huanan Seafood Wholesale Market. Inoculation of respiratory samples into human airway epithelial cells, Vero E6 and Huh7 cell lines, led to the isolation of a novel respiratory virus whose genome analysis showed it to be a novel coronavirus related to SARS-CoV, and therefore named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a betacoronavirus belonging to the subgenus Sarbecovirus. The global spread of SARS-CoV-2 and the thousands of deaths caused by coronavirus disease (COVID-19) led the World Health Organization to declare a pandemic on 12 March 2020. To date, the world has paid a high toll in this pandemic in terms of human lives lost, economic repercussions and increased poverty. In this review, we provide information regarding the epidemiology, serological and molecular diagnosis, origin of SARS-CoV-2 and its ability to infect human cells, and safety issues. Then we focus on the available therapies to fight COVID-19, the development of vaccines, the role of artificial intelligence in the management of the pandemic and limiting the spread of the virus, the impact of the COVID-19 epidemic on our lifestyle, and preparation for a possible second wave.
Serological testing for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging as an important component of the clinical management of patients with coronavirus disease 2019 (COVID-19) as well as the epidemiological assessment of SARS-CoV-2 exposure worldwide. In addition to molecular testing for the detection of SARS-CoV-2 infection, clinical laboratories have also needed to increase testing capacity to include serological evaluation of patients with suspected or known COVID-19. While regulatory approved serological immunoassays are now widely available from diagnostic manufacturers globally, there is significant debate regarding the clinical utility of these tests, as well as their clinical and analytical performance requirements prior to application. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay evaluation, and (D) test interpretation and limitations for serological testing of antibodies against SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories in the selection, verification, and implementation of serological assays and are of the utmost importance as we expand our pandemic response from initial case tracing and containment to mitigation strategies to minimize resurgence and further morbidity and mortality.
The diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection globally has relied extensively on molecular testing, contributing vitally to case identification, isolation, contact tracing, and rationalization of infection control measures during the coronavirus disease 2019 (COVID-19) pandemic. Clinical laboratories have thus needed to verify newly developed molecular tests and increase testing capacity at an unprecedented rate. As the COVID-19 pandemic continues to pose a global health threat, laboratories continue to encounter challenges in the selection, verification, and interpretation of these tests. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay verification, and (D) test interpretation and limitations for molecular testing of SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories worldwide and highlight the continued importance of laboratory medicine in our collective pandemic response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.