This paper studies the effects of cylindrical dielectric periodically‐layered structures on spontaneous emission from an excited dipole line source. The source is modeled as a forced oscillator with radiative damping. The underlying physics lies in how the oscillator can be driven by the reflected field supported by this structure. To match the boundary conditions of EM waves, the transfer matrix method (TMM) is employed for its simplicity and versatility. Both the frequency shift and modified radiative damping rate are formulated analytically. It is shown that due to interference the wave supported by the structures can affect the source emission significantly. Strong enhancement and inhibition of the emission depend on both the layered structure and the frequency. Different compositions of the structures are achieved by tuning the structure parameters such as the reflective index and the width of layers. Furthermore, the results reveal that the strong enhancement and inhibition are sensitive to the layer width. It is found that strong inhibition is stable against source position variation, whereas strong enhancement is quite unstable. Potential applications in cylindrical quantum well lasers and semiconductor devices and perspective for future work are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.