Three selenophene-incorporated quaterchalcogenophenebased donor−acceptor copolymers PFBT2Th2Se, PFBT2Se2Th, and PFBT4Se are designed and synthesized. To systematically fine-tune the molecular properties and investigate the chalcogen effect, PFBT2Th2Se and PFBT2Se2Th hybridize two thiophenes and two selenophenes as the donor with different isomeric main-chain placement while thiophene-free PFBT4Se uses quaterselenophene as the donor. On account of the selenophene's advantageous features such as higher quinoidal population and higher molecular polarizability, the three polymers show good light-harvesting ability, strong intermolecular interactions, high crystallinity, and high charge mobilities. Bulk-heterojunction solar cells incorporating these selenophenecontaining polymers have exhibited promising photovoltaic performance with impressive current densities over 20 mA/cm 2 . The device with the PFBT2Se2Th:PC 71 BM blend showed a PCE of 9.02% with a J sc of 21.02 mA/cm 2 . In addition, the device using quaterselenophene-based PFBT4Se:PC 71 BM blend exhibited a PCE of 8.92% with a superior J sc of 22.63 mA/cm 2 which represents one of the highest current densities from polymer:fullerene-based solar cells reported in the literature.
In this research, we developed six new selenophene-incorporated naphthobisthiadiazole-based donor−acceptor polymers PNT2Th2Se-OD, PNT2Se2Th-OD, PNT4Se-OD, PNT2Th2Se-DT, PNT2Se2Th-DT, and PNT4Se-DT. The structure−property relationships have been systematically established through the comparison of their structural variations: (1) isomeric biselenophene/bithiophene arrangement between PNT2Th2Se and PNT2Se2Th polymers, (2) biselenophene/bithiophene and quarterselenophene donor units between PNT2Th2Se/PNT2Se2Th and PNT4Se polymers, and (3) side-chain modification between the 2octyldodecylthiophene (OD)-and 2-decyltetradecyl (DT)-series polymers. The incorporation of selenophene units in the copolymers induces stronger charge transfer to improve the light-harvesting capability while maintaining the strong intermolecular interactions to preserve the intrinsic crystallinity for high carrier mobility. The organic field-effect transistor device using PNT2Th2Se-OD achieved a high hole mobility of 0.36 cm 2 V −1 s −1 with an on/off ratio of 1.9 × 10 5 . The solar cells with PNT2Th2Se-OD:PC 71 BM exhibited a power conversion efficiency of 9.47% with a V oc of 0.68 V, an fill factor of 67%, and an impressive J sc of 20.69 mA cm −2 .
We performed frequency-modulated (AC) and steady-state (DC) surface photovoltage spectroscopy (SPS) measurements on a bilayer structure consisting of an organic semiconductor (P3HT, P3HT:PC61BM, or PFBT2Se2Th:PC71BM) on top of a ZnO electron-transport layer. The AC spectra overlap with the absorption spectra of the organic layer, providing evidence that AC SPS corresponds to band-to-band transitions. The DC spectra are generally broader than the AC spectra, with responses extended below the absorption edge. Thus, DC SPS also probes transitions between band states and trap states within the band gap in addition to band-to-band transitions. When a hole-transport layer (HTL) is deposited on top of the organic layer, the DC spectra of P3HT and P3HT:PC61BM are narrower than those without the HTL, suggesting that the sub-band gap states exist at the surface of these organic semiconductors. In contrast, PFBT2Se2Th:PC71BM does not show signature of surface states or optically active trap states in the band gap. External quantum efficiency and capacitance measurements are employed to explain the nature of sub-band gap states that contribute to surface photovoltage signals and the differences between the two bulk heterojunction systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.